Preparation of a Monoclonal Antibody to Nϵ-(Hexanonyl)lysine: Application to the Evaluation of Protective Effects of Flavonoid Supplementation against Exercise-Induced Oxidative Stress in Rat Skeletal Muscle

2000 ◽  
Vol 274 (2) ◽  
pp. 389-393 ◽  
Author(s):  
Yoji Kato ◽  
Yoshiaki Miyake ◽  
Kanefumi Yamamoto ◽  
Yoshiharu Shimomura ◽  
Hirotomo Ochi ◽  
...  
2011 ◽  
Vol 110 (3) ◽  
pp. 661-669 ◽  
Author(s):  
Ana Saborido ◽  
Alba Naudí ◽  
Manuel Portero-Otín ◽  
Reinald Pamplona ◽  
Alicia Megías

Anabolic androgenic steroids are used in the sport context to enhance muscle mass and strength and to increase muscle fatigue resistance. Since muscle fatigue has been related to oxidative stress caused by an exercise-linked reactive oxygen species (ROS) production, we investigated the potential effects of a treatment with the anabolic androgenic steroid stanozolol against oxidative damage induced on rat skeletal muscle mitochondria by an acute bout of exhaustive exercise. Mitochondrial ROS generation with complex I- and complex II-linked substrates was increased in exercised control rats, whereas it remained unchanged in the steroid-treated animals. Stanozolol treatment markedly reduced the extent of exercise-induced oxidative damage to mitochondrial proteins, as indicated by the lower levels of the specific markers of protein oxidation, glycoxidation, and lipoxidation, and the preservation of the activity of the superoxide-sensitive enzyme aconitase. This effect was not due to an enhancement of antioxidant enzyme activities. Acute exercise provoked changes in mitochondrial membrane fatty acid composition characterized by an increased content in docosahexaenoic acid. In contrast, the postexercise mitochondrial fatty acid composition was not altered in stanozolol-treated rats. Our results suggest that stanozolol protects against acute exercise-induced oxidative stress by reducing mitochondrial ROS production, in association with a preservation of mitochondrial membrane properties.


2021 ◽  
pp. 100262
Author(s):  
Leonardo Raposo Rocha Gomes ◽  
Flávia de Souza Andrade Moraes ◽  
Letícia Miranda Evangelista ◽  
Elisiane Rodrigues Garioli ◽  
Ewelyne Miranda de Lima ◽  
...  

Author(s):  
Nanna Skytt Pilmark ◽  
Laura Oberholzer ◽  
Jens Frey Halling ◽  
Jonas M. Kristensen ◽  
Christina Pedersen Bønding ◽  
...  

Metformin and exercise both improve glycemic control, but in vitro studies have indicated that an interaction between metformin and exercise occurs in skeletal muscle, suggesting a blunting effect of metformin on exercise training adaptations. Two studies (a double-blind, parallel-group, randomized clinical trial conducted in 29 glucose-intolerant individuals and a double-blind, cross-over trial conducted in 15 healthy lean males) were included in this paper. In both studies, the effect of acute exercise +/- metformin treatment on different skeletal muscle variables, previously suggested to be involved in a pharmaco-physiological interaction between metformin and exercise, was assessed. Furthermore, in the parallel-group trial, the effect of 12 weeks of exercise training was assessed. Skeletal muscle biopsies were obtained before and after acute exercise and 12 weeks of exercise training, and mitochondrial respiration, oxidative stress and AMPK activation was determined. Metformin did not significantly affect the effects of acute exercise or exercise training on mitochondrial respiration, oxidative stress or AMPK activation, indicating that the response to acute exercise and exercise training adaptations in skeletal muscle is not affected by metformin treatment. Further studies are needed to investigate whether an interaction between metformin and exercise is present in other tissues, e.g. the gut. Trial registration: ClinicalTrials.gov (NCT03316690 and NCT02951260). Novelty bullets • Metformin does not affect exercise-induced alterations in mitochondrial respiratory capacity in human skeletal muscle • Metformin does not affect exercise-induced alterations in systemic levels of oxidative stress nor emission of reactive oxygen species from human skeletal muscle • Metformin does not affect exercise-induced AMPK activation in human skeletal muscle


2012 ◽  
Vol 45 (1) ◽  
pp. 75-80 ◽  
Author(s):  
Liping Zhao ◽  
Wenhui Yan ◽  
Heng Xiang ◽  
Xiaoyang Wang ◽  
Haixuan Qiao

2001 ◽  
Vol 21 (4) ◽  
pp. 133-136 ◽  
Author(s):  
Sule Arslan ◽  
Sevim Erdem ◽  
Aysen Sivri ◽  
Zafer Hasçelik ◽  
Ersin Tan

2011 ◽  
Vol 110 (4) ◽  
pp. 935-942 ◽  
Author(s):  
Ashley J. Smuder ◽  
Andreas N. Kavazis ◽  
Kisuk Min ◽  
Scott K. Powers

Doxorubicin (Dox) is a potent antitumor agent used in cancer treatment. Unfortunately, Dox is myotoxic and results in significant reductions in skeletal muscle mass and function. Complete knowledge of the mechanism(s) by which Dox induces toxicity in skeletal muscle is incomplete, but it is established that Dox-induced toxicity is associated with increased generation of reactive oxygen species and oxidative damage within muscle fibers. Since muscular exercise promotes the expression of numerous cytoprotective proteins (e.g., antioxidant enzymes, heat shock protein 72), we hypothesized that muscular exercise will attenuate Dox-induced damage in exercise-trained muscle fibers. To test this postulate, Sprague-Dawley rats were randomly assigned to the following groups: sedentary, exercise, sedentary with Dox, or exercise with Dox. Our results show increased oxidative stress and activation of cellular proteases (calpain and caspase-3) in skeletal muscle of animals treated with Dox. Importantly, our findings reveal that exercise can prevent the Dox-induced oxidative damage and protease activation in the trained muscle. This exercise-induced protection against Dox-induced toxicity may be due, at least in part, to an exercise-induced increase in muscle levels of antioxidant enzymes and heat shock protein 72. Together, these novel results demonstrate that muscular exercise is a useful countermeasure that can protect skeletal muscle against Dox treatment-induced oxidative stress and protease activation in skeletal muscles.


1995 ◽  
Vol 27 (Supplement) ◽  
pp. S37 ◽  
Author(s):  
J. Komulainen ◽  
X. Han ◽  
W. Wang ◽  
S. Koskinen ◽  
V. Kovanen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document