rat skeletal muscle
Recently Published Documents


TOTAL DOCUMENTS

2792
(FIVE YEARS 110)

H-INDEX

100
(FIVE YEARS 4)

2022 ◽  
Vol 36 (2) ◽  
Author(s):  
Paul Goede ◽  
Rob C. I. Wüst ◽  
Bauke V. Schomakers ◽  
Simone Denis ◽  
Frédéric M. Vaz ◽  
...  

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Marina Cefis ◽  
Remi Chaney ◽  
Aurore Quirié ◽  
Clélia Santini ◽  
Christine Marie ◽  
...  

AbstractBDNF (brain-derived neurotrophic factor) is present in skeletal muscle, controlling muscular metabolism, strength and regeneration processes. However, there is no consensus on BDNF cellular source. Furthermore, while endothelial tissue expresses BDNF in large amount, whether endothelial cells inside muscle expressed BDNF has never been explored. The aim of the present study was to provide a comprehensive analysis of BDNF localization in rat skeletal muscle. Cellular localization of BDNF and activated Tropomyosin-related kinase B (TrkB) receptors was studied by immunohistochemical analysis on soleus (SOL) and gastrocnemius (GAS). BDNF and activated TrkB levels were also measured in muscle homogenates using Western blot analysis and/or Elisa tests. The results revealed BDNF immunostaining in all cell types examined with a prominent staining in endothelial cells and a stronger staining in type II than type I muscular fibers. Endothelial cells but not other cells displayed easily detectable activated TrkB receptor expression. Levels of BDNF and activated TrkB receptors were higher in SOL than GAS. In conclusion, endothelial cells are an important and still unexplored source of BDNF present in skeletal muscle. Endothelial BDNF expression likely explains why oxidative muscle exhibits higher BDNF levels than glycolytic muscle despite higher the BDNF expression by type II fibers.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Zhang Ruixia ◽  
Liu chuanchuan ◽  
Guan Lu ◽  
Ma Shuang ◽  
Zhu Qiang ◽  
...  

Abstract Aim To explore the effects of hypothermia and hypoxia on rat skeletal muscle and lipid metabolism. Method Forty male rats were randomly divided into blank group, low-temperature group, hypoxia group, and hypothermia combined with hypoxia group. The body weight of the rats was monitored. The changes of Irisin were detected by ELISA, and LDL, HDL, TC, and TG levels in serum were detected by blood biochemistry. Western blot was used to detect the changes of lipid metabolism-related proteins. CCK8 was used to verify the effect of AMPK/PGC1α on the proliferation of rat skeletal muscle cells. Result In the case of cold stimulation and hypoxia, the weight of the rats decreased significantly, and the levels of LDL, HDL, TC, and TG in the serum were abnormal. The activity of fatty acid metabolism factors Irisin, UCP-1, and FABP4 is down-regulated by hypothermia and hypoxia. The activity of fat metabolism-related enzymes, ATGL, HSL, and MGL increased under hypothermia and low oxygen conditions. Hypothermia and hypoxia affected the morphology of skeletal muscle, and AMPK/PGC-1α can regulate the proliferation of skeletal muscle cells. Conclusion Hypothermia and hypoxia can reduce the body weight of rats, and affect the structure of skeletal muscle to promote lipid metabolism through AMPK/PGC-1α signaling pathway.


2021 ◽  
Vol 25 (Suppl 2) ◽  
pp. S47-54
Author(s):  
Eun-Jeong Cho ◽  
Youngju Choi ◽  
Jiyeon Kim ◽  
Jun Hyun Bae ◽  
Jinkyung Cho ◽  
...  

Purpose: The effects of aerobic exercise training on soleus muscle morphology, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in ovariectomized rat skeletal muscle were investigated.Methods: Female Sprague-Dawley rats were divided into control (CON), ovariectomy (OVX), and ovariectomy plus exercise (OVX+EX) groups. After ovarian excision, exercise training was performed using a rat treadmill at 20 m/min, 50 min/day, 5 days/week for 12 weeks. Protein levels of mitochondria-mediated apoptotic signaling and atrophy/hypertrophy signaling in the skeletal muscle (soleus) were examined through western immunoblot analysis.Results: The number of myocytes and myocyte cross-sectional area (CSA) were increased and the extramyocyte space was decreased in the OVX group compared to those in the CON group. However, aerobic exercise training significantly increased myocyte CSA and decreased extramyocyte space in the OVX+EX group compared to those in the OVX group. The protein levels of proapoptotic signaling and muscle atrophy signaling were significantly increased, whereas the protein levels of muscle hypertrophy signaling were significantly decreased in the OVX group compared to that in the CON group. Aerobic exercise training significantly decreased the protein levels of proapoptotic signaling and increased the protein level of antiapoptotic protein in the OVX+EX group compared to that in the OVX group. Aerobic exercise training significantly increased the protein levels of hypertrophy signaling and decreased protein levels of atrophy signaling in the OVX+EX group compared to those in the OVX group.Conclusions: Treadmill exercise improved estrogen deficiency-induced impairment in skeletal muscle remodeling, mitochondria-mediated apoptotic signaling, and atrophy/hypertrophy signaling in skeletal muscle.


2021 ◽  
Author(s):  
Peter Orchard ◽  
Nandini Manickam ◽  
Christa Ventresca ◽  
Swarooparani Vadlamudi ◽  
Arushi Varshney ◽  
...  

Skeletal muscle accounts for the largest proportion of human body mass, on average, and is a key tissue in complex diseases and mobility. It is composed of several different cell and muscle fiber types. Here, we optimize single-nucleus ATAC-seq (snATAC-seq) to map skeletal muscle cell–specific chromatin accessibility landscapes in frozen human and rat samples, and single-nucleus RNA-seq (snRNA-seq) to map cell-specific transcriptomes in human. We additionally perform multi-omics profiling (gene expression and chromatin accessibility) on human and rat muscle samples. We capture type I and type II muscle fiber signatures, which are generally missed by existing single-cell RNA-seq methods. We perform cross-modality and cross-species integrative analyses on 33,862 nuclei and identify seven cell types ranging in abundance from 59.6% to 1.0% of all nuclei. We introduce a regression-based approach to infer cell types by comparing transcription start site–distal ATAC-seq peaks to reference enhancer maps and show consistency with RNA-based marker gene cell type assignments. We find heterogeneity in enrichment of genetic variants linked to complex phenotypes from the UK Biobank and diabetes genome-wide association studies in cell-specific ATAC-seq peaks, with the most striking enrichment patterns in muscle mesenchymal stem cells (∼3.5% of nuclei). Finally, we overlay these chromatin accessibility maps on GWAS data to nominate causal cell types, SNPs, transcription factor motifs, and target genes for type 2 diabetes signals. These chromatin accessibility profiles for human and rat skeletal muscle cell types are a useful resource for nominating causal GWAS SNPs and cell types.


2021 ◽  
Author(s):  
Amy Zheng ◽  
Edward B. Arias ◽  
Haiyan Wang ◽  
Seong Eun Kwak ◽  
Xiufang Pan ◽  
...  

One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated AS160’s role for the postexercise increase in ISGU using muscles from male wildtype (WT) and AS160-knockout (AS160-KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore exercise’s ability to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment employed AS160-KO rats and AAV-delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on 3 key sites was not required for postexercise elevation in ISGU, it was essential for the full-exercise effect.


2021 ◽  
Author(s):  
Amy Zheng ◽  
Edward B. Arias ◽  
Haiyan Wang ◽  
Seong Eun Kwak ◽  
Xiufang Pan ◽  
...  

One exercise session can elevate insulin-stimulated glucose uptake (ISGU) in skeletal muscle, but the mechanisms remain elusive. Circumstantial evidence suggests a role for Akt substrate of 160 kDa (AS160 or TBC1D4). We used genetic approaches to rigorously test this idea. The initial experiment evaluated AS160’s role for the postexercise increase in ISGU using muscles from male wildtype (WT) and AS160-knockout (AS160-KO) rats. The next experiment used AS160-KO rats with an adeno-associated virus (AAV) approach to determine if rescuing muscle AS160 deficiency could restore exercise’s ability to improve ISGU. The third experiment tested if eliminating the muscle GLUT4 deficit in AS160-KO rats via AAV-delivered GLUT4 would enable postexercise enhancement of ISGU. The final experiment employed AS160-KO rats and AAV-delivery of AS160 mutated to prevent phosphorylation of Ser588, Thr642, and Ser704 to evaluate their role in postexercise ISGU. We discovered: 1) AS160 expression was essential for postexercise increase in ISGU; 2) rescuing muscle AS160 expression of AS160-KO rats restored postexercise enhancement of ISGU; 3) restoring GLUT4 expression in AS160-KO muscle did not rescue the postexercise increase in ISGU; and 4) although AS160 phosphorylation on 3 key sites was not required for postexercise elevation in ISGU, it was essential for the full-exercise effect.


Sign in / Sign up

Export Citation Format

Share Document