Plane-Wave Analysis and Comparison of Split-Field, Biaxial, and Uniaxial PML Methods as ABCs for Pseudospectral Electromagnetic Wave Simulations in Curvilinear Coordinates

1998 ◽  
Vol 146 (2) ◽  
pp. 747-774 ◽  
Author(s):  
Baolin Yang ◽  
Peter G. Petropoulos
2020 ◽  
Vol 221 (3) ◽  
pp. 1765-1776 ◽  
Author(s):  
Jia Wei ◽  
Li-Yun Fu ◽  
Zhi-Wei Wang ◽  
Jing Ba ◽  
José M Carcione

SUMMARY The Lord–Shulman thermoelasticity theory combined with Biot equations of poroelasticity, describes wave dissipation due to fluid and heat flow. This theory avoids an unphysical behaviour of the thermoelastic waves present in the classical theory based on a parabolic heat equation, that is infinite velocity. A plane-wave analysis predicts four propagation modes: the classical P and S waves and two slow waves, namely, the Biot and thermal modes. We obtain the frequency-domain Green's function in homogeneous media as the displacements-temperature solution of the thermo-poroelasticity equations. The numerical examples validate the presence of the wave modes predicted by the plane-wave analysis. The S wave is not affected by heat diffusion, whereas the P wave shows an anelastic behaviour, and the slow modes present a diffusive behaviour depending on the viscosity, frequency and thermoelasticity properties. In heterogeneous media, the P wave undergoes mesoscopic attenuation through energy conversion to the slow modes. The Green's function is useful to study the physics in thermoelastic media and test numerical algorithms.


2012 ◽  
Vol 60 (4) ◽  
pp. 1957-1968 ◽  
Author(s):  
Williams L. Nicomedes ◽  
Renato Cardoso Mesquita ◽  
Fernando José da Silva Moreira

Geophysics ◽  
2001 ◽  
Vol 66 (4) ◽  
pp. 1141-1148 ◽  
Author(s):  
José M. Carcione ◽  
Fabio Cavallini

We derive an analytical solution for electromagnetic waves propagating in a 3‐D lossy orthotropic medium for which the electric permittivity tensor is proportional to the magnetic permeability tensor. The solution is obtained through a change of coordinates that transforms the spatial differential operator into a pure Laplace operator and the differential equations for the electric and magnetic field components into pure Helmholtz equations. A plane‐wave analysis gives the expression of the slowness and attenuation surfaces as a function of frequency and propagation direction. The transverse electric and transverse magnetic surfaces degenerate to one repeated sheet so that, in any direction, the two differently polarized plane waves have the same slowness. A computer experiment with realistic geophysical parameters has shown that the anisotropic propagation and dissipation properties emerging from plane‐wave analysis agree with the different time histories of the magnetic field computed at a number of representative receiver locations.


Sign in / Sign up

Export Citation Format

Share Document