electromagnetic waves
Recently Published Documents


TOTAL DOCUMENTS

8228
(FIVE YEARS 1504)

H-INDEX

105
(FIVE YEARS 9)

2022 ◽  
Author(s):  
Yaniv Kurman ◽  
Raphael Dahan ◽  
Hanan Herzig Sheinfux ◽  
Gilles Rosolen ◽  
Eli Janzen ◽  
...  

Abstract Optical vortices in planar geometries are a universal wave phenomenon, where electromagnetic waves possess topologically protected integer values of orbital angular momentum (OAM). The conservation of OAM governs their dynamics, including their rules of creation and annihilation. However, such dynamics remained so far beyond experimental reach. Here, we present a first observation of creation and annihilation of optical vortex pairs. The vortices conserve their combined OAM during pair creation/annihilation events and determine the field profile throughout their motion between these events. We utilize free electrons in an ultrafast transmission electron microscope to probe the vortices, which appear in the form of phonon polaritons in the 2D material hexagonal boron nitride. These results provide the first observation of optical vortices in any 2D material, which were predicted but never observed. Our findings promote future investigation of vortices in 2D materials and their use for chiral plasmonics, toward the control of selection rules in light-matter interactions and the creation of optical simulators of phase transitions in condensed matter physics.


Author(s):  
И.А. Баранников ◽  
Е.А. Ищенко ◽  
С.М. Фёдоров

Рассматривается плазменная вибраторная антенна, которая предназначена для работы в VHF диапазоне на частоте 140 МГц. Вибраторные плазменные антенны отличаются от обычных вибраторных антенн тем, что металлический проводник заменяется плазмой в газоразрядной трубке. Плазменный вибратор, создаваемый разрядом в трубке, способен включаться и выключаться за время порядка микросекунд. Применение плазменной антенны позволяет обеспечить два режима работы: активный, когда плазма индуцирует проводящую поверхность, и скрытый, когда антенна становится практически невидимой для электромагнитных волн, а плазменное облако отсутствует. Для определения характеристик антенны использовалось электродинамическое моделирование. Полученные результаты показывают, что характеристики плазменной вибраторной антенны близки к характеристикам эквивалентного ей металлического диполя, при этом длина плазменной антенны меньше. Для определения эффективности скрытного режима антенны производилось сравнение характеристик эффективной площади рассеяния плазменной антенны с выключенным плазменным облаком и эквивалентного металлического диполя. Полученные результаты показывают, что плазменная антенна обладает высокой эффективностью излучения, диаграммами направленности, схожими с эквивалентной дипольной антенной, и значительно меньшими значениями эффективной площади рассеяния (ЭПР) в выключенном режиме The article discusses a plasma dipole antenna, which is designed to operate in the VHF band at a frequency of 140 MHz. Plasma dipole antennas differ from conventional dipole antennas in that the metal conductor is replaced by plasma in the discharge tube. The plasma dipole created by the discharge in the tube is capable of turning on and off in times of the order of microseconds. The use of a plasma antenna makes it possible to provide two modes of operation: active, when the plasma induces a conductive surface, and hidden, when the antenna becomes practically invisible to electromagnetic waves, and the plasma cloud is absent. We used electrodynamic modeling to determine the characteristics of the antenna. The results show that the characteristics of the plasma dipole antenna are close to those of the equivalent metal dipole, while the length of the plasma antenna is shorter. To determine the efficiency of the hidden mode of the antenna, we compared the characteristics of radar cross-section of the plasma antenna with the plasma cloud turned off and the equivalent metal dipole. The results obtained show that the plasma antenna has a high radiation efficiency, directional patterns similar to an equivalent dipole antenna, and significantly lower RCS values in the off mode


Author(s):  
Lalitha Kandasamy ◽  
Manjula J.

Background: Microwave imaging is one of the emerging non-invasive portable imaging techniques, which uses nonionized radiations to take a detailed view of biological tissues in the microwave frequency range. Brain stroke is an emergency caused by the interruption of the blood supply into parts of brain, leading to the loss of millions of brain cells. Imaging plays a major role in stroke diagnosis for prompt treatment. Objective: This work proposes a computationally efficient algorithm called the GPR algorithm to locate the blood clot with a size of 10 mm in microwave images. Methods: The electromagnetic waves are radiated, and backscattered reflections are received by Antipodal Vivaldi antenna with the parasitic patch (48 mm*21 mm). The received signals are converted to a planar 2D image, and the depth of the blood clot is identified from the B-scan image. The novelty of this work lies in applying the GPR algorithm for the accurate positioning of a blood clot in a multilayered head tissue. Results: The proposed system is effectively demonstrated using a 3D EM simulator and simulated results are verified in a Vector network analyzer (E8363B) with an experimental setup. Conclusion: This an alternative safe imaging modality compared to present imaging systems(CT and MRI)


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 243
Author(s):  
Rui-Jia Xu ◽  
Yu-Sheng Lin

In recent years, tunable metamaterials have attracted intensive research interest due to their outstanding characteristics, which are dependent on the geometrical dimensions rather than the material composition of the nanostructure. Among tuning approaches, micro-electro-mechanical systems (MEMS) is a well-known technology that mechanically reconfigures the metamaterial unit cells. In this study, the development of MEMS-based metamaterial is reviewed and analyzed based on several types of actuators, including electrothermal, electrostatic, electromagnetic, and stretching actuation mechanisms. The moveable displacement and driving power are the key factors in evaluating the performance of actuators. Therefore, a comparison of actuating methods is offered as a basic guideline for selecting micro-actuators integrated with metamaterial. Additionally, by exploiting electro-mechanical inputs, MEMS-based metamaterials make possible the manipulation of incident electromagnetic waves, including amplitude, frequency, phase, and the polarization state, which enables many implementations of potential applications in optics. In particular, two typical applications of MEMS-based tunable metamaterials are reviewed, i.e., logic operation and sensing. These integrations of MEMS with metamaterial provide a novel route for the enhancement of conventional optical devices and exhibit great potentials in innovative applications, such as intelligent optical networks, invisibility cloaks, photonic signal processing, and so on.


2022 ◽  
Author(s):  
Pengtao Lai ◽  
Zenglin Li ◽  
Wei Wang ◽  
Jia Qu ◽  
Liang Wei Wu ◽  
...  

Abstract Coding metasurfaces have attracted tremendous interests due to unique capabilities of manipulating electromagnetic wave. However, archiving transmissive coding metasurface is still challenging. Here we propose a transmissive anisotropic coding metasurface that enables the independent control of two orthogonal polarizations. The polarization beam splitter and the OAM generator have been studied as typical applications of anisotropic 2-bit coding metasurface. The simulated far field patterns illustrate that the x and y polarized electromagnetic waves are deflected into two different directions, respectively. The anisotropic coding metasurface has been experimentally verified to realize an orbital angular momentum (OAM) beam with l = 2 of right-handed polarized wave, resulting from both contributions from linear-to-circular polarization conversion and the phase profile modulation. This work is beneficial to enrich the polarization manipulation field and develop transmissive coding metasurfaces.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 484
Author(s):  
Yun-Yun Huang ◽  
Jian Wu

Nano coatings for anti−corrosion and electromagnetic wave absorbing can simultaneously implement the functions of assimilating electromagnetic waves and reducing the corrosion of materials caused by corrosive environments, such as seawater. In this work, a composite material for both electromagnetic wave absorption and anti−corrosion was prepared by an in−situ chemical oxidation and surface coating method using carbonyl iron powder (CIP), graphene oxide (GO) and aniline (AN). The synthesized composite material was characterized by scanning electron microscopy (SEM), infrared spectroscopy (FT−IR) and XRD. The carbonyl iron powder−graphene oxide−polyaniline (CIP−GO−PANI) composite material was used as the functional filler, and the epoxy resin was the matrix body for preparing the anticorrosive wave−absorbing coating. The results show that CIP had strong wave−absorbing properties, and the anti−corrosion property was greatly enhanced after being coated by GO−PANI.


2022 ◽  
Author(s):  
Mengmeng Li ◽  
Mengmeng Li ◽  
Filiberto Bilotti

<p>Space-time-modulated metasurfaces can manipulate electromagnetic waves in space and frequency domain simultaneously. In this paper, an analytical design of space-time- modulated metasurfaces with modulation elements composed of two paths, In-phase (I) and Quadrature (Q), is proposed. The model is derived analytically, the space/frequency domain manipulations are achieved by designing the dimension and time sequence of I and Q paths. In the specular reflection direction, an objective frequency shift of the reflected first order harmonic can be obtained. While, in other directions, the opposite first order harmonic can be easily controlled by changing the dimension of I/Q paths and the objective first order harmonic remains unchanged. Furthermore, with a small dimension of I/Q paths, the first order harmonic can be used for beam scanning by pre-designing the start time of the modulation element. To realize the space-time-modulated metasurface with the required periodically time-varying responses, 2-bit unit-cells loaded with dynamically switchable pin diodes are employed as I/Q modulation. Both analytical and numerical results demonstrate that space and frequency domain manipulations of the reflected fields by the first order harmonics can be simultaneously obtained. The proposed designs have potential applications in wireless communications, radar camouflaging, and cloaking.<br></p>


2022 ◽  
Vol 14 (2) ◽  
pp. 251
Author(s):  
Yuanzheng Wang ◽  
Hui Qin ◽  
Yu Tang ◽  
Donghao Zhang ◽  
Donghui Yang ◽  
...  

Ground penetrating radar (GPR) is one of the most recommended tools for routine inspection of tunnel linings. However, the rebars in the reinforced concrete produce a strong shielding effect on the electromagnetic waves, which may hinder the interpretation of GPR data. In this work, we proposed a method to improve the identification of tunnel lining voids by designing a generative adversarial network-based rebar clutter elimination network (RCE-GAN). The designed network has two sets of generators and discriminators, and by introducing the cycle-consistency loss, the network is capable of learning high-level features between unpaired GPR images. In addition, an attention module and a dilation center part were designed in the network to improve the network performance. Validation of the proposed method was conducted on both synthetic and real-world GPR images, collected from the implementation of finite-difference time-domain (FDTD) simulations and a controlled physical model experiment, respectively. The results demonstrate that the proposed method is promising for its lower demand on the training dataset and the improvement in the identification of tunnel lining voids.


Sign in / Sign up

Export Citation Format

Share Document