Semiclassical Surface Hopping Methods for Nonadiabatic Transitions in Condensed Phases

Author(s):  
Michael F. Herman
Author(s):  
Diandong Tang ◽  
Lin Shen ◽  
Wei-hai Fang

The quantitative prediction on nonadiabatic transitions between different electronic state is important to understand ultrafast processes in photochemistry. A variety of mixed quantum-classical molecular dynamics methods such as surface hopping...


2002 ◽  
Vol 01 (02) ◽  
pp. 319-349 ◽  
Author(s):  
NIKOS L. DOLTSINIS ◽  
DOMINIK MARX

Extensions of traditional molecular dynamics to excited electronic states and non-Born–Oppenheimer dynamics are reviewed focusing on applicability to chemical reactions of large molecules, possibly in condensed phases. The latter imposes restrictions on both the level of accuracy of the underlying electronic structure theory and the treatment of nonadiabaticity. This review, therefore, exclusively deals with ab initio "on the fly" molecular dynamics methods. For the same reason, mainly mixed quantum-classical approaches to nonadiabatic dynamics are considered.


2003 ◽  
Vol 771 ◽  
Author(s):  
G. Panzera ◽  
S. Conoci ◽  
S. Coffa ◽  
B. Pignataro ◽  
S. Sortino ◽  
...  

AbstractThin films (1-24 layers) of bis-zinc ethane-bridged porphyrin dimer (1) have been transferred on solid surfaces, by the Langmuir- Schäfer (LS) horizontal method. The related surface pressurearea isotherm curve shows that in dependence of the film pressure different condensed phases may occur in the monolayer. The inspection of the monolayer by Brewster Angle Microscopy (BAM) reveals the presence of peculiar networks whose structural features seemingly change upon film compression. On the other hand, the Scanning Force Microscopy (SFM) analysis performed on LS films shows fractal networks constituted by nanoscopic supramolecular aggregates, whose shape and size depend again on the LS deposition surface pressure. Finally, also UV-vis spectroscopy measurements indicates that the absorption is almost linearly related to the film thickness that is directly connected to the surface pressure.


2021 ◽  
Vol 23 (9) ◽  
pp. 5236-5243
Author(s):  
Ying Hu ◽  
Chao Xu ◽  
Linfeng Ye ◽  
Feng Long Gu ◽  
Chaoyuan Zhu

Global switching on-the-fly trajectory surface hopping molecular dynamics simulation was performed on the accurate TD-B3LYP/6-31G* potential energy surfaces for E-to-Z and Z-to-E photoisomerization of dMe-OMe-NAIP up to S1(ππ*) excitation.


Sign in / Sign up

Export Citation Format

Share Document