coulomb interactions
Recently Published Documents


TOTAL DOCUMENTS

885
(FIVE YEARS 128)

H-INDEX

62
(FIVE YEARS 5)

Author(s):  
С.Ю. Давыдов ◽  
О.В. Посредник

For the electrons of surface dimer formed by adsorbed particle and substrate atom effects of the intra- and interatomic Coulomb interactions are taken into account. Two cases are considered: adsorption of magnetic particle on nonmagnetic substrate and adsorption of nonmagnetic particle on magnetic substrate. Analytical expressions for the surface dimer magnetization are obtained for the regimes of weak and strong dimer – substrate coupling


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Edoardo Cignoni ◽  
Margherita Lapillo ◽  
Lorenzo Cupellini ◽  
Silvia Acosta-Gutiérrez ◽  
Francesco Luigi Gervasio ◽  
...  

AbstractLight-harvesting complexes of plants exert a dual function of light-harvesting (LH) and photoprotection through processes collectively called nonphotochemical quenching (NPQ). While LH processes are relatively well characterized, those involved in NPQ are less understood. Here, we characterize the quenching mechanisms of CP29, a minor LHC of plants, through the integration of two complementary enhanced-sampling techniques, dimensionality reduction schemes, electronic calculations and the analysis of cryo-EM data in the light of the predicted conformational ensemble. Our study reveals that the switch between LH and quenching state is more complex than previously thought. Several conformations of the lumenal side of the protein occur and differently affect the pigments’ relative geometries and interactions. Moreover, we show that a quenching mechanism localized on a single chlorophyll-carotenoid pair is not sufficient but many chlorophylls are simultaneously involved. In such a diffuse mechanism, short-range interactions between each carotenoid and different chlorophylls combined with a protein-mediated tuning of the carotenoid excitation energies have to be considered in addition to the commonly suggested Coulomb interactions.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Clemens Spinnler ◽  
Liang Zhai ◽  
Giang N. Nguyen ◽  
Julian Ritzmann ◽  
Andreas D. Wieck ◽  
...  

AbstractIn a radiative Auger process, optical decay leaves other carriers in excited states, resulting in weak red-shifted satellite peaks in the emission spectrum. The appearance of radiative Auger in the emission directly leads to the question if the process can be inverted: simultaneous photon absorption and electronic demotion. However, excitation of the radiative Auger transition has not been shown, neither on atoms nor on solid-state quantum emitters. Here, we demonstrate the optical driving of the radiative Auger transition, linking few-body Coulomb interactions and quantum optics. We perform our experiments on a trion in a semiconductor quantum dot, where the radiative Auger and the fundamental transition form a Λ-system. On driving both transitions simultaneously, we observe a reduction of the fluorescence signal by up to 70%. Our results suggest the possibility of turning resonance fluorescence on and off using radiative Auger as well as THz spectroscopy with optics close to the visible regime.


2021 ◽  
Vol 104 (20) ◽  
Author(s):  
Andrea Secchi ◽  
Laura Bellentani ◽  
Andrea Bertoni ◽  
Filippo Troiani

2021 ◽  
Vol 2015 (1) ◽  
pp. 012028
Author(s):  
Adrià Canós Valero

Abstract In the recent years, all-dielectric nanophotonics has been showing promising potential for biotechnology, with important progress in the development of efficient all-optical, all-dielectric nanosensing devices overcoming the ohmic losses inherently present in their plasmonic counterparts. In the quest to achieve single molecule sensitivities, a judicious design of the optical response of the nanoantennas is required. Here, we approach this problem from the perspective of non-Hermitian physics and investigate the interaction of two finite nanorods supporting Mie resonances, with the aim of maximizing the frequency detuning induced by a perturbation of the structure. We develop a simple semi-analytical technique to efficiently investigate the coupled system, and we find that Coulomb interactions, together with mutual interference induced by breaking the dimer symmetry, can effectively bring the structure towards a non-Hermitian singularity, an exceptional point, that can potentially increase the sensitivity. The results of this work are expected to lead to novel developments in all-optical single molecule detection, and merge for the first time all-dielectric nanophotonics with exceptional point physics.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Kaifeng Yang ◽  
Katsumi Nagase ◽  
Yoshiro Hirayama ◽  
Tetsuya D. Mishima ◽  
Michael B. Santos ◽  
...  

AbstractDetection and characterization of a different type of topological excitations, namely the domain wall (DW) skyrmion, has received increasing attention because the DW is ubiquitous from condensed matter to particle physics and cosmology. Here we present experimental evidence for the DW skyrmion as the ground state stabilized by long-range Coulomb interactions in a quantum Hall ferromagnet. We develop an alternative approach using nonlocal resistance measurements together with a local NMR probe to measure the effect of low current-induced dynamic nuclear polarization and thus to characterize the DW under equilibrium conditions. The dependence of nuclear spin relaxation in the DW on temperature, filling factor, quasiparticle localization, and effective magnetic fields allows us to interpret this ground state and its possible phase transitions in terms of Wigner solids of the DW skyrmion. These results demonstrate the importance of studying the intrinsic properties of quantum states that has been largely overlooked.


Sign in / Sign up

Export Citation Format

Share Document