Molecular biology of inducible high-affinity nitrate transport in higher plants

2001 ◽  
pp. 12-13
Author(s):  
G. Leggewie ◽  
B. G. Forde ◽  
K. Piepenburg ◽  
M. Udvardi
2013 ◽  
Vol 163 (3) ◽  
pp. 1103-1106 ◽  
Author(s):  
Anthony D.M. Glass ◽  
Zorica Kotur

2007 ◽  
Vol 49 (12) ◽  
pp. 1719-1725 ◽  
Author(s):  
Chao Cai ◽  
Xue-Qiang Zhao ◽  
Yong-Guan Zhu ◽  
Bin Li ◽  
Yi-Ping Tong ◽  
...  

FEBS Letters ◽  
2000 ◽  
Vol 481 (1) ◽  
pp. 88-88
Author(s):  
Jing-Jiang Zhou ◽  
Emilio Fernández ◽  
Aurora Galván ◽  
Anthony J. Miller

2021 ◽  
Vol 22 (23) ◽  
pp. 13036
Author(s):  
Normig M. Zoghbi-Rodríguez ◽  
Samuel David Gamboa-Tuz ◽  
Alejandro Pereira-Santana ◽  
Luis C. Rodríguez-Zapata ◽  
Lorenzo Felipe Sánchez-Teyer ◽  
...  

Nitrate transporter 2 (NRT2) and NRT3 or nitrate-assimilation-related 2 (NAR2) proteins families form a two-component, high-affinity nitrate transport system, which is essential for the acquisition of nitrate from soils with low N availability. An extensive phylogenomic analysis across land plants for these families has not been performed. In this study, we performed a microsynteny and orthology analysis on the NRT2 and NRT3 genes families across 132 plants (Sensu lato) to decipher their evolutionary history. We identified significant differences in the number of sequences per taxonomic group and different genomic contexts within the NRT2 family that might have contributed to N acquisition by the plants. We hypothesized that the greater losses of NRT2 sequences correlate with specialized ecological adaptations, such as aquatic, epiphytic, and carnivory lifestyles. We also detected expansion on the NRT2 family in specific lineages that could be a source of key innovations for colonizing contrasting niches in N availability. Microsyntenic analysis on NRT3 family showed a deep conservation on land plants, suggesting a high evolutionary constraint to preserve their function. Our study provides novel information that could be used as guide for functional characterization of these gene families across plant lineages.


Author(s):  
Hironori Itoh ◽  
Miyako Ueguchi‐Tanaka ◽  
Makoto Matsuoka

1989 ◽  
Vol 1 (10) ◽  
pp. 953
Author(s):  
Michael R. Sussman ◽  
Jeffrey F. Harper

Sign in / Sign up

Export Citation Format

Share Document