scholarly journals Tensor and Spin Representations of SO(4) and Discrete Quantum Gravity

2005 ◽  
pp. 377-394
Author(s):  
M. Lorente ◽  
P. Kramer
2019 ◽  
Vol 17 (01) ◽  
pp. 2050007
Author(s):  
Andrea Addazi ◽  
Antonino Marcianò

We show that the correspondence among [Formula: see text], the 1D Schwarzian Model, Sachdev–Ye–Kitaev model and [Formula: see text] Topological Quantum Gravity can be extended to the case of [Formula: see text]. The [Formula: see text]-matrix, related to the gravitational scattering amplitude near the horizon of [Formula: see text] black hole, corresponds (on the side of the holographic projection) to a crossing kernel in the Schwarzian Model. The [Formula: see text]-matrix is related to the 6j-symbol of SU[Formula: see text]. We also find that in the Euclidean [Formula: see text] a new Kac–Moody symmetry of instantons emerges out. We dub these new solutions Kac–Moodions. A one-to-one correspondence of Kac–Moodion levels and SU[Formula: see text] spin representations is established. Every instanton then corresponds to spin representations deployed in Topological Quantum Gravity. The instantons are directly connected to the Black Hole entropy as punctures on its horizon. This strongly supports the recent proposal, in arXiv:1707.00347, that a Kac–Moody symmetry of gravitational instantons is related to the black hole information processing. We also comment on a further correspondence that can be established between the Schwarzian Model and noncommutative spacetimes in [Formula: see text]D, passing through the equivalence with Topological Quantum Gravity with cosmological constant, in the limit when the latter vanishes.


Author(s):  
James Lindesay
Keyword(s):  

2019 ◽  
Author(s):  
Vitaly Kuyukov

Many approaches to quantum gravity consider the revision of the space-time geometry and the structure of elementary particles. One of the main candidates is string theory. It is possible that this theory will be able to describe the problem of hierarchy, provided that there is an appropriate Calabi-Yau geometry. In this paper we will proceed from the traditional view on the structure of elementary particles in the usual four-dimensional space-time. The only condition is that quarks and leptons should have a common emerging structure. When a new formula for the mass of the hierarchy is obtained, this structure arises from topological quantum theory and a suitable choice of dimensional units.


2020 ◽  
Author(s):  
Vitaly Kuyukov
Keyword(s):  

Braking effect in quantum gravity


2019 ◽  
Vol 51 (5) ◽  
Author(s):  
S. Ariwahjoedi ◽  
I. Husin ◽  
I. Sebastian ◽  
F. P. Zen

Nature ◽  
2003 ◽  
Vol 424 (6952) ◽  
pp. 1019-1021 ◽  
Author(s):  
T. Jacobson ◽  
S. Liberati ◽  
D. Mattingly

2021 ◽  
Vol 103 (6) ◽  
Author(s):  
Ratindranath Akhoury ◽  
Ryo Saotome ◽  
George Sterman

2021 ◽  
pp. 136064
Author(s):  
I.L. Buchbinder ◽  
S.A. Fedoruk ◽  
A.P. Isaev ◽  
M.A. Podoinitsyn

2012 ◽  
Vol 27 (28) ◽  
pp. 1250164
Author(s):  
J. MANUEL GARCÍA-ISLAS

In the three-dimensional spin foam model of quantum gravity with a cosmological constant, there exists a set of observables associated with spin network graphs. A set of probabilities is calculated from these observables, and hence the associated Shannon entropy can be defined. We present the Shannon entropy associated with these observables and find some interesting bounded inequalities. The problem relates measurements, entropy and information theory in a simple way which we explain.


Sign in / Sign up

Export Citation Format

Share Document