high energy scattering
Recently Published Documents


TOTAL DOCUMENTS

361
(FIVE YEARS 13)

H-INDEX

42
(FIVE YEARS 0)

2021 ◽  
Author(s):  
◽  
Mark Musonda Webster Shawa

This thesis discusses the prospect of finding the gravitational dual to the strongly coupled conformal fluids, with a special interest in the quark-gluon plasma. Such a task can be achieved by matching certain physical observables of two apparently different theories that are dually related owing to the fact that the same string theory can be viewed in two different ways. This is particularly useful when one of the theories is intractable while its dual is manageable. We begin by postulating a particular type of gravitational theory from which we determine graviton scattering amplitudes in a special regime of high momentum. Using the gauge–gravity duality dictionary, the graviton scattering amplitudes can be mapped to stress-tensor correlation functions in the gauge theory. One of the outcomes of high-energy scattering experiments involving the quark-gluon plasma is stress-tensor correlator data. This thesis provides an algorithm for matching graviton scattering amplitudes with stress-tensor correlator data which, in principle, can be used to identify the gravitational dual to the quark-gluon plasma.


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
S. Bondarenko ◽  
S. Pozdnyakov ◽  
M. A. Zubkov

AbstractWe consider Riemann–Cartan gravity with minimal Palatini action, which is classically equivalent to Einstein gravity. Following the ideas of Lipatov (Nucl Phys B 365:614–632, 1991, Phys Part Nucl 44:391–413, 2013, Subnucl Ser 49:131, 2013, Subnucl Ser 50:213–225, 2014, Int J Mod Phys A 31(28/29):1645011, 2016, EPJ Web Conf 125:01010, 2016) and Bartels et al. (JHEP 07:056, 2014) we propose the effective action for this theory aimed at the description of the high-energy scattering of gravitating particles in the multi-Regge kinematics. We add to the Palatini action the new terms. These terms are responsible for the interaction of gravitational quanta with gravitational reggeons. The latter replace exchange by multiple gravitational excitations. We propose the heuristic explanation of its particular form based on an analogy to the reggeon field theory of QCD. We argue that Regge kinematics assumes the appearance of an effective two-dimensional model describing the high-energy scattering similar to that of QCD. Such a model may be formulated in a way leading to our final effective theory. It contains interaction between the ordinary quanta of spin connection and vielbein with the gravitational reggeons.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Suro Kim ◽  
Toshifumi Noumi ◽  
Keito Takeuchi ◽  
Siyi Zhou

Abstract We study implications of perturbative unitarity for quasi-single field inflation with the inflaton and one massive scalar. Analyzing high energy scattering, we show that non-Gaussianities with |fNL| ≳ 1 cannot be realized without turning on interactions which violate unitarity at a high energy scale. Then, we provide a relation between fNL and the scale of new physics that is required for UV completion. In particular we find that for the Hubble scale H ≳ × 109 GeV, Planck suppressed operators can easily generate too large non-Gaussanities and so it is hard to realize successful quasi-single field inflation without introducing a mechanism to suppress quantum gravity corrections. Also we generalize the analysis to the regime where the isocurvature mode is heavy and the inflationary dynamics is captured by the inflaton effective theory. Requiring perturbative unitarity of the two-scalar UV models with the inflaton and one heavy scalar, we clarify the parameter space of the P(X, ϕ) model which is UV completable by a single heavy scalar.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
António Antunes ◽  
Miguel S. Costa ◽  
Tobias Hansen ◽  
Aaditya Salgarkar ◽  
Sourav Sarkar

Abstract We derive an optical theorem for perturbative CFTs which computes the double discontinuity of conformal correlators from the single discontinuities of lower order correlators, in analogy with the optical theorem for flat space scattering amplitudes. The theorem takes a purely multiplicative form in the CFT impact parameter representation used to describe high-energy scattering in the dual AdS theory. We use this result to study four-point correlation functions that are dominated in the Regge limit by the exchange of the graviton Regge trajectory (Pomeron) in the dual theory. At one-loop the scattering is dominated by double Pomeron exchange and receives contributions from tidal excitations of the scattering states which are efficiently described by an AdS vertex function, in close analogy with the known Regge limit result for one-loop string scattering in flat space at finite string tension. We compare the flat space limit of the conformal correlator to the flat space results and thus derive constraints on the one-loop vertex function for type IIB strings in AdS and also on general spinning tree level type IIB amplitudes in AdS.


2021 ◽  
Author(s):  
Fabio Peluso

Abstract We continue in this paper to illustrate the implications of the Dual Model of Liquids (DML) by deriving the expression for the isochoric specific heat as a function of the collective degrees of freedom available at a given temperature and comparing it with the analogous expression obtained in the Phonon Theory of Liquid Thermodynamics. The Dual Model of Liquids has been recently proposed as a model describing the dynamics of liquids at the mesoscopic level. Bringing together the early pictures of Brillouin and Frenkel and the recent experimental outcomes obtained by means of high energy scattering, liquids are considered in the DML as constituted by a population of wave packets, responsible for the propagation of elastic and thermal perturbations, and of dynamic aggregates of molecules, in continuous re-arrangement, diving in an ocean of amorphous, disordered liquid. The collective degrees of freedom contribute to the exchange of energy and momentum between the material particles and the lattice particles, which the liquids are supposed to be composed of in the DML.First, we show that the expression obtained for the specific heat in the DML is in line with the experimental results. Second, its comparison with that of the Phonon Theory of Liquid Thermodynamics allows getting interesting insights about the limiting values of the collective degrees of freedom and on that of the isobaric thermal expansion coefficient, two quantities that appear related to each other in this framework


Author(s):  
Chris White

Scattering amplitudes in quantum field theories are of widespread interest, due to a large number of theoretical and phenomenological applications. Much is known about the possible behaviour of amplitudes, that is independent of the details of the underlying theory. This knowledge is often neglected in modern QFT courses, and the aim of these notes - aimed at graduate students - is to redress this. We review the possible singularities that amplitudes can have, before examining the generic behaviour that can arise in the high-energy limit. Finally, we illustrate the results using examples from QCD and gravity.


Sign in / Sign up

Export Citation Format

Share Document