Providing Persistence for Sensor Data Streams by Remote WAL

Author(s):  
Hideyuki Kawashima ◽  
Michita Imai ◽  
Yuichiro Anzai
Keyword(s):  
2018 ◽  
Vol 14 (11) ◽  
pp. 155014771881130 ◽  
Author(s):  
Jaanus Kaugerand ◽  
Johannes Ehala ◽  
Leo Mõtus ◽  
Jürgo-Sören Preden

This article introduces a time-selective strategy for enhancing temporal consistency of input data for multi-sensor data fusion for in-network data processing in ad hoc wireless sensor networks. Detecting and handling complex time-variable (real-time) situations require methodical consideration of temporal aspects, especially in ad hoc wireless sensor network with distributed asynchronous and autonomous nodes. For example, assigning processing intervals of network nodes, defining validity and simultaneity requirements for data items, determining the size of memory required for buffering the data streams produced by ad hoc nodes and other relevant aspects. The data streams produced periodically and sometimes intermittently by sensor nodes arrive to the fusion nodes with variable delays, which results in sporadic temporal order of inputs. Using data from individual nodes in the order of arrival (i.e. freshest data first) does not, in all cases, yield the optimal results in terms of data temporal consistency and fusion accuracy. We propose time-selective data fusion strategy, which combines temporal alignment, temporal constraints and a method for computing delay of sensor readings, to allow fusion node to select the temporally compatible data from received streams. A real-world experiment (moving vehicles in urban environment) for validation of the strategy demonstrates significant improvement of the accuracy of fusion results.


2014 ◽  
pp. 291-321 ◽  
Author(s):  
Stephen Voida ◽  
Donald J. Patterson ◽  
Shwetak N. Patel
Keyword(s):  

Author(s):  
Dumindu Madithiyagasthenna ◽  
Prem Prakash Jayaraman ◽  
Ahsan Morshed ◽  
Abdur Rahim Mohammad Forkan ◽  
Dimitrios Georgakopoulos ◽  
...  

Author(s):  
Pedro Pereira Rodrigues ◽  
João Gama ◽  
Luís Lopes

In this chapter we explore different characteristics of sensor networks which define new requirements for knowledge discovery, with the common goal of extracting some kind of comprehension about sensor data and sensor networks, focusing on clustering techniques which provide useful information about sensor networks as it represents the interactions between sensors. This network comprehension ability is related with sensor data clustering and clustering of the data streams produced by the sensors. A wide range of techniques already exists to assess these interactions in centralized scenarios, but the seizable processing abilities of sensors in distributed algorithms present several benefits that shall be considered in future designs. Also, sensors produce data at high rate. Often, human experts need to inspect these data streams visually in order to decide on some corrective or proactive operations (Rodrigues & Gama, 2008). Visualization of data streams, and of data mining results, is therefore extremely relevant to sensor data management, and can enhance sensor network comprehension, and should be addressed in future works.


2018 ◽  
Vol 130 ◽  
pp. 939-946
Author(s):  
José Molano-Pulido ◽  
Claudia Jiménez-Guarín

2013 ◽  
Vol 17 (6) ◽  
pp. 12-20 ◽  
Author(s):  
David E. Boyle ◽  
David C. Yates ◽  
Eric M. Yeatman
Keyword(s):  

2013 ◽  
Vol 284-287 ◽  
pp. 3507-3511 ◽  
Author(s):  
Edgar Chia Han Lin

Due to the great progress of computer technology and mature development of network, more and more data are generated and distributed through the network, which is called data streams. During the last couple of years, a number of researchers have paid their attention to data stream management, which is different from the conventional database management. At present, the new type of data management system, called data stream management system (DSMS), has become one of the most popular research areas in data engineering field. Lots of research projects have made great progress in this area. Since the current DSMS does not support queries on sequence data, this project will study the issues related to two types of data. First, we will focus on the content filtering on single-attribute streams, such as sensor data. Second, we will focus on multi-attribute streams, such as video films. We will discuss the related issues such as how to build an efficient index for all queries of different streams and the corresponding query processing mechanisms.


Sign in / Sign up

Export Citation Format

Share Document