content filtering
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 55)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Imen Gmach ◽  
Nadia Abaoub ◽  
Rubina Khan ◽  
Naoufel Mahfoudh ◽  
Amira Kaddour

PurposeIn this article the authors will focus on the state of the art on information filtering and recommender systems based on trust. Then the authors will represent a variety of filtering and recommendation techniques studied in different literature, like basic content filtering, collaborative filtering and hybrid filtering. The authors will also examine different trust-based recommendation algorithms. It will ends with a summary of the different existing approaches and it develops the link between trust, sustainability and recommender systems.Design/methodology/approachMethodology of this study will begin with a general introduction to the different approaches of recommendation systems; then define trust and its relationship with recommender systems. At the end the authors will present their approach to “trust-based recommendation systems”.FindingsThe purpose of this study is to understand how groups of users could improve trust in a recommendation system. The authors will examine how to evaluate the performance of recommender systems to ensure their ability to meet the needs that led to its creation and to make the system sustainable with respect to the information. The authors know very well that selecting a measure must depend on the type of data to be processed and user interests. Since the recommendation domain is derived from information search paradigms, it is obvious to use the evaluation measures of information systems.Originality/valueThe authors presented a list of recommendations systems. They examined and compared several recommendation approaches. The authors then analyzed the dominance of collaborative filtering in the field and the emergence of Recommender Systems in social web. Then the authors presented and analyzed different trust algorithms. Finally, their proposal was to measure the impact of trust in recommendation systems.


Author(s):  
Mariia Kozulia ◽  
Vladyslava Sushko

Currently, the question of state, formation and development of the information source interaction system, the scientific interaction and users' requestsin certain fields of activity remains relevant under the conditions of the development of the use of Internet services. Recommendation systems are oneof the types of artificial intelligence technologies for predicting parameters and capabilities.Due to the rapid increase in data on the Internet, it is becoming more difficult to find something really useful. And the recommendations offered by theservice itself may not always correspond to the user's preferences. The relevance of the topic is to develop a personal recommendation system forsearching books, which will not only reduce time and amount of unnecessary information, but also meet the user's preferences based on the analysis oftheir assessments and be able to provide the necessary information at the right time. All this makes resources based on referral mechanisms attractiveto the user. Such a system of recommendations will be of interest to producers and sellers of books, because it is an opportunity to provide personalrecommendations to customers according to their preferences.The paper considers algorithms for providing recommender systems (collaborative and content filtering systems) and their disadvantages.Combinations of these algorithms using a hybrid algorithm are also described. It is proposed to use a method that combines several hybrids in onesystem and consists of two elements: switching and feature strengthening. This made it possible to avoid problems arising from the use of each of thealgorithms separately.A literature web application was developed using Python using the Django and Bootstrap frameworks, as well as SQLite databases, and a system ofrecommendations was implemented to provide the most accurate suggestion. During the testing of the developed software, the work of the literatureservice was checked, which calculates personal recommendations for users using the method of hybrid filtering. The recommendation system wastested successfully and showed high efficiency.


2021 ◽  
Vol 18 (1) ◽  
pp. 27-35
Author(s):  
Roman B. Kupriyanov ◽  
Dmitry L. Agranat ◽  
Ruslan S. Suleymanov

Problem and goal. Developed and tested solutions for building individual educational trajectories of students, focused on improving the educational process by forming a personalized set of recommendations from the optional disciplines. Methodology. Data mining and machine learning methods were used to process both numeric and textual data. The approaches based on collaborative and content filtering to generate recommendations for students were also used. Results. Testing of the developed system was carried out in the context of several periods of elective courses selection, in which 4,769 first- and second-year students took part. A set of recommendations was automatically generated for each student, and then the quality of the recommendations was evaluated based on the percentage of students who used these recommendations. According to the results of testing, the recommendations were used by 1,976 students, which was 41.43% of the total number of participants. Conclusion. In the study, a recommendation system was developed that performs automatic ranking of subjects of choice and forms a personalized set of recommendations for each student based on their interests for building individual educational trajectories.


2021 ◽  
Author(s):  
U.S. Tambe ◽  
N.R. Kakad ◽  
S.J. Suryawanshi ◽  
S.S. Bhamre

To build a social network or social relations between people, we use social networking platforms like Facebook, Twitter, apps, etc. Using this media, users can share their views and opinions about a particular thing. Many people use their media for personal interests, entertainment, the market stocks, or business purposes. Nowadays, user security is the major concern for social networking sites. Online social networks give a little bit of support regarding content filtering. In this article, we proposed a system that provides security regarding malicious content that is posted on their social networking sites. To filter the content that might be unwanted messages, labeled images, or vulgar images, we proposed three level architecture. The user can use the auto-blocking facility as well.


2021 ◽  
Vol 9 ◽  
Author(s):  
Tianming Liu ◽  
Xiang Xiao

The global COVID-19 pandemic has put everyone in an urgent need of accessing and comprehending health information online. Meanwhile, there has been vast amount of information/misinformation/disinformation generated over the Internet, particularly social media platforms, resulting in an infodemic. This public health crisis of COVID-19 pandemic has put each individual and the entire society in a test: what is the level of eHealth literacy is needed to seek accurate health information from online resources and to combat infodemic during a pandemic? This article aims to summarize the significances and challenges of improving eHealth literacy in both communicable (e.g., COVID-19) and non-communicable diseases [e.g., cancer, Alzheimer's disease, and cardiovascular diseases (CVDs)]. Also, this article will make our recommendations of a general framework of AI-based approaches to improving eHealth literacy and combating infodemic, including AI-augmented lifelong learning, AI-assisted translation, simplification, and summarization, and AI-based content filtering. This general framework of AI-based approaches to improving eHealth literacy and combating infodemic has the general advantage of matching the right online health information to the right people.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lei Li

The growth and popularity of streaming music have changed the way people consume music, and users can listen to online music anytime and anywhere. By integrating various recommendation algorithms/strategies (user profiling, collaborative filtering, content filtering, etc.), we capture users’ interests and preferences and recommend the content of interest to them. To address the sparsity of behavioral data in digital music marketing, which leads to inadequate mining of user music preference features, a metric ranking learning recommendation algorithm with fused content representation is proposed. Relative partial order relations are constructed using observed and unobserved behavioral data to enable the model to be fully trained, while audio feature extraction submodels related to the recommendation task are constructed to further alleviate the data sparsity problem, and finally, the preference relationships between users and songs are mined through metric learning. Convolutional neural networks are used to extract the high-level semantic features of songs, and then the high-level semantic features of songs extracted from the previous layer are reformed into a session time sequence list according to the time sequence of user listening in order to build a bidirectional recurrent neural network model based on the attention mechanism so that it can reduce the influence of noisy data and learn the strong dependencies between songs.


2021 ◽  
Author(s):  
Mai Abusair ◽  
Mohammad Sharaf ◽  
Mosab Bozeya ◽  
Abdulrhman Beiruti

This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.


Author(s):  
Chen Zhao ◽  
Takehito Utsuro ◽  
Yasuhide Kawada

This paper addresses the problem of automatic recognition of out-of-topic documents from a small set of similar documents that are expected to be on some common topic. The objective is to remove documents of noise from a set. A topic model based classification framework is proposed for the task of discovering out-of-topic documents. This paper introduces a new concept of annotated {\it search engine suggests}, where this paper takes whichever search queries were used to search for a page as representations of content in that page. This paper adopted word embedding to create distributed representation of words and documents, and perform similarity comparison on search engine suggests. It is shown that search engine suggests can be highly accurate semantic representations of textual content and demonstrate that our document analysis algorithm using such representation for relevance measure gives satisfactory performance in terms of in-topic content filtering compared to the baseline technique of topic probability ranking.


2021 ◽  
Author(s):  
Maksim Iavich ◽  
Giorgi Iashvili ◽  
Avtandil Gagnidze ◽  
Roman Odarchenko

Sign in / Sign up

Export Citation Format

Share Document