Nonadaptive Univariate Optimization for Observations with Noise

Author(s):  
James M. Calvin
Author(s):  
Haizhou Liu ◽  
Hao Gao

Abstract Vibration suppression of distributed parameter systems is of great interest and has a wide range of applications. The dynamic performance of a primary system can be improved by adding dynamic vibration absorbers (DVA). Although the relevant topics have been studied for decades, the trade-off between capability of suppressing multiple resonant peaks and complexity of absorbers has not been well addressed. In this paper, the vibration suppression problem of a uniform Euler-Bernoulli beam with closely spaced natural frequencies is investigated. To achieve desired vibration reduction, a two-DOF DVA is connected to the beam through a pair of a spring and a dashpot. By introducing a virtual ground spring, the parameters of the absorber are determined via extended fixed point theory. The proposed method only requires univariate optimization and is computationally efficient. Numerical examples conducted verify the viability of the proposed method and the effectiveness of a two-DOF DVA in suppressing double resonances.


2013 ◽  
Vol 756-759 ◽  
pp. 3789-3793
Author(s):  
Ling Fei Xu ◽  
Hai Jing Kang

To study the model of plasma antenna, a system intended to establish and sustain plasma with RF power was described in this paper. This system was made as a modular design, a feature that facilitates changing of operating frequency, RF power. A univariate optimization algorithm was used to achieve impedance matching (coefficient< 5%) in the system, therefore some key experimental data were measured accurately. Experiments showed that there is a difference between establishing power and sustaining power of plasma, and indicated the function of the length of the plasma column vs. square root of RF power.


2018 ◽  
Vol 2018 ◽  
pp. 1-13
Author(s):  
Yue Xiao

Tikhonov regularization method is effective in stabilizing reconstruction process of the near-field acoustic holography (NAH) based on the equivalent source method (ESM), and the selection of the optimal regularization parameter is a key problem that determines the regularization effect. In this work, a new method for determining the optimal regularization parameter is proposed. The transfer matrix relating the source strengths of the equivalent sources to the measured pressures on the hologram surface is augmented by adding a fictitious point source with zero strength. The minimization of the norm of this fictitious point source strength is as the criterion for choosing the optimal regularization parameter since the reconstructed value should tend to zero. The original inverse problem in calculating the source strengths is converted into a univariate optimization problem which is solved by a one-dimensional search technique. Two numerical simulations with a point driven simply supported plate and a pulsating sphere are investigated to validate the performance of the proposed method by comparison with the L-curve method. The results demonstrate that the proposed method can determine the regularization parameter correctly and effectively for the reconstruction in NAH.


2004 ◽  
Vol 36 (6) ◽  
pp. 677-690 ◽  
Author(s):  
Abdolreza Joghataie ◽  
Navid H. Allahverdipur

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1501
Author(s):  
Asier Salicio-Paz ◽  
Ixone Ugarte ◽  
Jordi Sort ◽  
Eva Pellicer ◽  
Eva García-Lecina

Univariate and multivariate optimizations of a novel electroless nickel formulation have been carried out by means of the Taguchi method. From the compositional point of view, adjustment of the complexing agent concentration in solution is crucial for fine-tuning free Ni2+ ions concentration and, in turn, the mechanical properties of the resulting coatings. The Ni (II) concentration and the pH are the main parameters which help restrict the incorporation of phosphorous into the Ni layers. On the other hand, the stirring rate, the pH and the reducing agent concentration are the most influential parameters for the corrosion resistance of the coatings. Multivariate optimization of the electrolyte leads to a set of optimized parameters in which the mechanical properties (hardness and worn volume) of the layers are similar to the optimal values achieved in the univariate optimization, but the corrosion rate is decreased by one order of magnitude.


Sign in / Sign up

Export Citation Format

Share Document