Are Rock Avalanches and Landslides Due to Large Earthquakes or Local Topographic Effects? A Case Study of the Lurøy Earthquake of August 31, 1819, A 3D Finite Difference Approach

Author(s):  
T. R. M. Kebeasy ◽  
Eystein S. Husebye ◽  
S. Hestholm
2012 ◽  
Vol 26 ◽  
pp. 69-84 ◽  
Author(s):  
Alessandro Fanti ◽  
Giuseppe Mazzarella ◽  
Giorgio Montisci ◽  
Giovanni Andrea Casula

2012 ◽  
Vol 1 (1) ◽  
pp. 29 ◽  
Author(s):  
A. Fanti ◽  
G. Mazzarella ◽  
G. Montisci

We describe here a Vector Finite Difference approach to the evaluation of waveguide eigenvalues and modes for rectangular, circular and elliptical waveguides. The FD is applied using a 2D cartesian, polar and elliptical grid in the waveguide section. A suitable Taylor expansion of the vector mode function allows to take exactly into account the boundary condition. To prevent the raising of spurious modes, our FD approximation results in a constrained eigenvalue problem, that we solve using a decomposition method. This approach has been evaluated comparing our results to the analytical modes of rectangular and circula rwaveguide, and to known data for the elliptic case.


2021 ◽  
Author(s):  
Hassiba Beghzim ◽  
Toufik Karech ◽  
Tayeb Bouzid

Abstract The analysis of the failure due to the effect of the propagation of normal and reversed faults with different angles of inclination and by sliding through the Ourkiss dam isstudied numerically. Mainly at the end of construction and at the highest water level, for this purpose the non-linear finite difference method is used considering four fault angles of inclination, activated at the center of the base of the embankment.The results of the study show that the shear stress values increase with the increase of the vertical base displacement imposed in both conditions of the dam state, and this for both normal and overturned faults.


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 203
Author(s):  
Xiaozhong Tong ◽  
Yujun Guo ◽  
Wei Xie

A finite-difference approach with non-uniform meshes was presented for simulating magnetotelluric responses in 2D structures. We presented the calculation formula of this scheme from the boundary value problem of electric field and magnetic field, and compared finite-difference solutions with finite-element numerical results and analytical solutions of a 1D model. First, a homogeneous half-space model was tested and the finite-difference approach can provide very good accuracy for 2D magnetotelluric modeling. Then we compared them to the analytical solutions for the two-layered geo-electric model; the relative errors of the apparent resistivity and the impedance phase were both increased when the frequency was increased. To conclude, we compare our finite-difference simulation results with COMMEMI 2D-0 model with the finite-element solutions. Both results are in close agreement to each other. These comparisons can confirm the validity and reliability of our finite-difference algorithm. Moreover, a future project will extend the 2D structures to 3D, where non-uniform meshes should perform especially well.


Sign in / Sign up

Export Citation Format

Share Document