On-Chip Optical Ring Bus Communication Architecture for Heterogeneous MPSoC

Author(s):  
Sudeep Pasricha ◽  
Nikil D. Dutt
Author(s):  
Liang Guang ◽  
Ethiopia Nigussie ◽  
Juha Plosila ◽  
Hannu Tenhunen

Self-aware and adaptive Network-on-Chip (NoC) with dual monitoring networks is presented. Proper monitoring interface is an essential prerequisite to adaptive system reconfiguration in parallel on-chip computing. This work proposes a DMC (dual monitoring communication) architecture to support self-awareness on the NoC platform. One type of monitoring communication is integrated with data channel, in order to trace the run-time profile of data communication in high-speed on-chip networking. The other type is separate from the data communication, and is needed to report the run-time profile to the supervising monitor. Direct latency monitoring on mesochronous NoC is presented as a case study and is directly traced in the integrated communication with a novel latency monitoring table in each router. The latency information is reported by the separate monitoring communication to the supervising monitor, which reconfigures the system to adjust the latency, for instance by dynamic voltage and frequency scaling. With quantitative evaluation using synthetic traces and real applications, the effectiveness and efficiency of direct latency monitoring with DMC architecture is demonstrated. The area overhead of DMC architecture is estimated to be small in 65nm CMOS technology.


2016 ◽  
Vol 13 (10) ◽  
pp. 7592-7598
Author(s):  
J Kalaivani ◽  
B Vinayagasundaram

The Network-on-Chip (NoC) systems have emerged in on-chip communication architecture in various fields. To achieve excellent results in Network on Chip (NoC) systems application, the routing must eliminate the deadlock issues from the network. To overcome this issue in the network, in this paper, we propose Deadlock Free Load Balanced Adaptive Routing. In this approach, Oblivious Routing (OR) algorithm is implemented on the channel by using the probability function. The network considers the capacity of the node and tries to maximize the throughput based on the connectivity between the data packets flow and minimize the channel load. A Reconfiguration Protocol is used for the data packets to choose other channel in the network if the deadlock occurs. Simulation results show that this approach reduces the delay and packet loss in the network.


2018 ◽  
Vol 5 (1) ◽  
pp. 54-57
Author(s):  
Wahyudi Khusnandar ◽  
Fransiscus Ati Halim ◽  
Felix Lokananta

XY adaptive routing protocol is a routing protocol used on UTAR NoC communication architecture. This routing algorithm adapts shrotest-path first algorithm, which will forward will not be able to work optimally if the closest route no longer have enough bandwidth to continue the packet. Packet will be stored inside the router and forwarded to the nearest router when closest route has enough bandwidth. This paper suggest TTL based routing algorithm to resolve this issue. TTL based routing algorithm adapts XY adaptive routing protocol by adding several parameters on RTL UTAR NoC and additional bit in each packet sent by router. This additional bit and parameter will be used by TTL based algorithm as additional factors in choosing alternative routes inside the communication architecture. Use of TTL on TTL based routing different from use of TTL on communication network. Packets that carry TTL value that equal to Maximum TTL will be route using XY adaptive routing protocol. TTL based routing algorithm has shown better performance compared to XY adaptive routing on some of the experiment done using MSCL NoC Traffic Pattern Suite. This research also proves that TTL based routing algorithm cannot work optimally on small-scaled architecture.


Sign in / Sign up

Export Citation Format

Share Document