Nonlinear Self Dual Solutions for TU-Games

Author(s):  
Peter Sudhölter
Keyword(s):  
2013 ◽  
Vol 15 (03) ◽  
pp. 1340016 ◽  
Author(s):  
SYLVAIN BEAL ◽  
AMANDINE GHINTRAN ◽  
ERIC REMILA ◽  
PHILIPPE SOLAL

The river sharing problem deals with the fair distribution of welfare resulting from the optimal allocation of water among a set of riparian agents. Ambec and Sprumont [Sharing a river, J. Econ. Theor. 107, 453–462] address this problem by modeling it as a cooperative TU-game on the set of riparian agents. Solutions to that problem are reviewed in this article. These solutions are obtained via an axiomatic study on the class of river TU-games or via a market mechanism.


1992 ◽  
Vol 07 (23) ◽  
pp. 2077-2085 ◽  
Author(s):  
A. D. POPOV

The anti-self-duality equations for gauge fields in d = 4 and a generalization of these equations to dimension d = 4n are considered. For gauge fields with values in an arbitrary semisimple Lie algebra [Formula: see text] we introduce the ansatz which reduces the anti-self-duality equations in the Euclidean space ℝ4n to a system of equations breaking up into the well known Nahm's equations and some linear equations for scalar field φ.


2014 ◽  
Vol 80 (3) ◽  
pp. 307-327 ◽  
Author(s):  
J. Arin ◽  
I. Katsev
Keyword(s):  

Top ◽  
2010 ◽  
Vol 20 (3) ◽  
pp. 578-591 ◽  
Author(s):  
Theo S. H. Driessen ◽  
Anna B. Khmelnitskaya ◽  
Jordi Sales
Keyword(s):  

2018 ◽  
Vol 20 (01) ◽  
pp. 1750029 ◽  
Author(s):  
Takumi Kongo

We provide axiomatic characterizations of the solutions of transferable utility (TU) games on the fixed player set, where at least three players exist. We introduce two axioms on players’ nullification. One axiom requires that the difference between the effect of a player’s nullification on the nullified player and on the others is relatively constant if all but one players are null players. Another axiom requires that a player’s nullification affects equally all of the other players. These two axioms characterize the set of all affine combinations of the equal surplus division and equal division values, together with the two basic axioms of efficiency and null game. By replacing the first axiom on players’ nullification with appropriate monotonicity axioms, we narrow down the solutions to the set of all convex combinations of the two values, or to each of the two values.


Sign in / Sign up

Export Citation Format

Share Document