Light Microscopy and Raman Imaging of Carotenoids in Plant Cells In Situ and in Released Carotene Crystals

Author(s):  
Tomasz Oleszkiewicz ◽  
Marta Z. Pacia ◽  
Ewa Grzebelus ◽  
Rafal Baranski
Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


2019 ◽  
Vol 9 (7) ◽  
pp. 1310 ◽  
Author(s):  
Kerstin Hauke ◽  
Johannes Kehren ◽  
Nadine Böhme ◽  
Sinje Zimmer ◽  
Thorsten Geisler

In the last decades, Raman spectroscopy has become an important tool to identify and investigate minerals, gases, glasses, and organic material at room temperature. In combination with high-temperature and high-pressure devices, however, the in situ investigation of mineral transformation reactions and their kinetics is nowadays also possible. Here, we present a novel approach to in situ studies for the sintering process of silicate ceramics by hyperspectral Raman imaging. This imaging technique allows studying high-temperature solid-solid and/or solid-melt reactions spatially and temporally resolved, and opens up new avenues to study and visualize high-temperature sintering processes in multi-component systems. After describing in detail the methodology, the results of three application examples are presented and discussed. These experiments demonstrate the power of hyperspectral Raman imaging for in situ studies of the mechanism(s) of solid-solid or solid-melt reactions at high-temperature with a micrometer-scale resolution as well as to gain kinetic information from the temperature- and time-dependent growth and breakdown of minerals during isothermal or isochronal sintering.


1999 ◽  
Vol 112 (1) ◽  
pp. 117-122 ◽  
Author(s):  
Sodmergen ◽  
Jian-Gong Niu ◽  
Lin-Jiang Li ◽  
Jiang-Xun He ◽  
Feng-Li Guo

The Analyst ◽  
2018 ◽  
Vol 143 (14) ◽  
pp. 3489-3498 ◽  
Author(s):  
J. Dybas ◽  
M. Grosicki ◽  
M. Baranska ◽  
K. M. Marzec

Herein, we provide the Raman imaging results for different stages of erythrophagocytosis of senescent red blood cells executed by isolated murine primary Kupffer cells and a murine macrophage cell line (RAW 264.7).


2007 ◽  
Vol 21 (2) ◽  
pp. 69-89 ◽  
Author(s):  
Notburga Gierlinger ◽  
Manfred Schwanninger

To gain a better understanding on structure, chemical composition and properties of plant cells, tissues and organs several microscopic, chemical and physical methods have been applied during the last years. However, a knowledge gap exists about the location, quantity and structural arrangement of molecules in the native sample or what happens on the molecular level when samples are chemically or mechanically treated or how they respond to mechanical stress. These questions need to be answered to optimise utilization of plants in food industry and pharmacy and to understand structure-function relationships of plant cells to learn from natures unique. Advances in combining microscopy with Raman spectroscopy have tackled this problem in a non-invasive way and provide chemical and structural informationin situwithout any staining or complicated sample preparation. In this review the different Raman techniques (e.g. near infrared Fourier Transform Raman spectroscopy (NIR-FT), resonance Raman spectroscopy, surface-enhanced Raman spectroscopy) are briefly described before approaches in plant science are summarised. Investigations on structural cell wall components, valuable plant substances, metabolites and inorganic substances are included with emphasis on Raman imaging. The introduction of the NIR-FT-Raman technique led to many applications on green plant material by eliminating the problem of sample fluorescence. For mapping and imaging of whole plant organs (seeds, fruits, leaves) the lateral resolution (~10μm) of the NIR-FT technique is adequate, whereas for investigations on the lower hierarchical level of cells and cell walls the high resolution gained with a visible laser based system is needed. Examples on high resolution Raman imaging are given on wood cells, showing that changes in chemistry and orientation can be followed within and between different cell wall layers having dimensions smaller than 1 μm. In addition imaging the distribution of amorphous silica is shown on horsetail tissue, including an area scan from a cross section as well as a depth profiling within a silica rich knob of the outer stem wall.


Sign in / Sign up

Export Citation Format

Share Document