Weierstrass Points

Author(s):  
Maxim E. Kazaryan ◽  
Sergei K. Lando ◽  
Victor V. Prasolov
Keyword(s):  
1972 ◽  
Vol 95 (2) ◽  
pp. 357 ◽  
Author(s):  
Bruce A. Olsen

1967 ◽  
Vol 19 ◽  
pp. 268-272 ◽  
Author(s):  
Donald L. McQuillan

In (4) G. Lewittes proved some theorems connecting automorphisms of a compact Riemann surface with the Weierstrass points of the surface, and in (5) he applied these results to elliptic modular functions. We refer the reader to these papers for definitions and details. It is our purpose in this note to point out that these results are of a purely algebraic nature, valid in arbitrary algebraic function fields of one variable over algebraically closed ground fields (with an obvious restriction on the characteristic). We shall also make use of the calculation carried out in (5) to obtain a rather easy extension of a theorem proved in (6, p. 312).


1978 ◽  
Vol 21 (1) ◽  
pp. 99-101 ◽  
Author(s):  
Arthur K. Wayman

In (3), J. Lewittes establishes a connection between the number of fixed points of an automorphism of a compact Riemann surface and Weierstrass points on the surface; Lewittes′ techniques are analytic in nature. In (4), D. L. McQuillan proved the result by purely algebraic methods and extended it to arbitrary algebraic function fields in one variable over algebraically closed ground fields, but with restriction to tamely ramified places. In this paper we will give a different proof of the theorem and show that it is an elementary consequence of the Riemann-Hurwitz relative genus formula. Moreover, we can remove the tame ramification restriction.


Sign in / Sign up

Export Citation Format

Share Document