riemann surface
Recently Published Documents


TOTAL DOCUMENTS

952
(FIVE YEARS 109)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
pp. 1-15
Author(s):  
Jesús Rodríguez

Abstract Given an integer $g>2$ , we state necessary and sufficient conditions for a finite Abelian group to act as a group of automorphisms of some compact nonorientable Riemann surface of genus g. This result provides a new method to obtain the symmetric cross-cap number of Abelian groups. We also compute the least symmetric cross-cap number of Abelian groups of a given order and solve the maximum order problem for Abelian groups acting on nonorientable Riemann surfaces.


2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Mattia Cesàro ◽  
Gabriel Larios ◽  
Oscar Varela

Abstract A holographic duality was recently established between an $$ \mathcal{N} $$ N = 4 non-geometric AdS4 solution of type IIB supergravity in the so-called S-fold class, and a three- dimensional conformal field theory (CFT) defined as a limit of $$ \mathcal{N} $$ N = 4 super-Yang-Mills at an interface. Using gauged supergravity, the $$ \mathcal{N} $$ N = 2 conformal manifold (CM) of this CFT has been assessed to be two-dimensional. Here, we holographically characterise the large-N operator spectrum of the marginally-deformed CFT. We do this by, firstly, providing the algebraic structure of the complete Kaluza-Klein (KK) spectrum on the associated two-parameter family of AdS4 solutions. And, secondly, by computing the $$ \mathcal{N} $$ N = 2 super-multiplet dimensions at the first few KK levels on a lattice in the CM, using new exceptional field theory techniques. Our KK analysis also allows us to establish that, at least at large N, this $$ \mathcal{N} $$ N = 2 CM is topologically a non-compact cylindrical Riemann surface bounded on only one side.


2021 ◽  
Vol 11 (5) ◽  
Author(s):  
Lakshya Bhardwaj ◽  
Max Hübner ◽  
Sakura Schafer-Nameki

We determine the 1-form symmetry group for any 4d4d\mathcal{N}=2𝒩=2 class S theory constructed by compactifying a 6d6d\mathcal{N}=(2,0)𝒩=(2,0) SCFT on a Riemann surface with arbitrary regular untwisted and twisted punctures. The 6d6d theory has a group of mutually non-local dimension-2 surface operators, modulo screening. Compactifying these surface operators leads to a group of mutually non-local line operators in 4d4d, modulo screening and flavor charges. Complete specification of a 4d4d theory arising from such a compactification requires a choice of a maximal subgroup of mutually local line operators, and the 1-form symmetry group of the chosen 4d4d theory is identified as the Pontryagin dual of this maximal subgroup. We also comment on how to generalize our results to compactifications involving irregular punctures. Finally, to complement the analysis from 6d, we derive the 1-form symmetry from a Type IIB realization of class S theories.


Author(s):  
Anatoly Korybut

Abstract An analogue of the Moyal star product is presented for the deformed oscillator algebra. It contains several homotopy-like additional integration parameters in the multiplication kernel generalizing the differential Moyal star-product formula exp[iεαβ ∂α∂β]. Using Pochhammer formula [1], integration over these parameters is carried over a Riemann surface associated with the expression of the type zx(1 − z)y where x and y are arbitrary real numbers.


Author(s):  
A. Zuevsky

In this paper, we construct the foliation of a space associated to correlation functions of vertex operator algebras, considered on Riemann surfaces. We prove that the computation of general genus g correlation functions determines a foliation on the space associated to these correlation functions a sewn Riemann surface. Certain further applications of the definition are proposed.


Author(s):  
Mirko Mauri

Abstract For $G = \mathrm {GL}_2, \mathrm {SL}_2, \mathrm {PGL}_2$ we compute the intersection E-polynomials and the intersection Poincaré polynomials of the G-character variety of a compact Riemann surface C and of the moduli space of G-Higgs bundles on C of degree zero. We derive several results concerning the P=W conjectures for these singular moduli spaces.


2021 ◽  
Vol 21 (4) ◽  
pp. 451-461
Author(s):  
Massimo Giulietti ◽  
Motoko Kawakita ◽  
Stefano Lia ◽  
Maria Montanucci

Abstract In 1895 Wiman introduced the Riemann surface 𝒲 of genus 6 over the complex field ℂ defined by the equation X 6+Y 6+ℨ 6+(X 2+Y 2+ℨ 2)(X 4+Y 4+ℨ 4)−12X 2 Y 2 ℨ 2 = 0, and showed that its full automorphism group is isomorphic to the symmetric group S 5. We show that this holds also over every algebraically closed field 𝕂 of characteristic p ≥ 7. For p = 2, 3 the above polynomial is reducible over 𝕂, and for p = 5 the curve 𝒲 is rational and Aut(𝒲) ≅ PGL(2,𝕂). We also show that Wiman’s 𝔽192 -maximal sextic 𝒲 is not Galois covered by the Hermitian curve H19 over the finite field 𝔽192 .


2021 ◽  
pp. 2150096
Author(s):  
Indranil Biswas ◽  
Steven Bradlow ◽  
Sorin Dumitrescu ◽  
Sebastian Heller

Given a compact connected Riemann surface [Formula: see text] of genus [Formula: see text], and an effective divisor [Formula: see text] on [Formula: see text] with [Formula: see text], there is a unique cone metric on [Formula: see text] of constant negative curvature [Formula: see text] such that the cone angle at each point [Formula: see text] is [Formula: see text] [R. C. McOwen, Point singularities and conformal metrics on Riemann surfaces, Proc. Amer. Math. Soc. 103 (1988) 222–224; M. Troyanov, Prescribing curvature on compact surfaces with conical singularities, Trans. Amer. Math. Soc. 324 (1991) 793–821]. We describe the Higgs bundle on [Formula: see text] corresponding to the uniformization associated to this conical metric. We also give a family of Higgs bundles on [Formula: see text] parametrized by a nonempty open subset of [Formula: see text] that correspond to conical metrics of the above type on moving Riemann surfaces. These are inspired by Hitchin’s results in [N. J. Hitchin, The self-duality equations on a Riemann surface, Proc. London Math. Soc. 55 (1987) 59–126] for the case [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document