A Non-fully-Connected Spiking Neural Network with STDP for Solving a Classification Task

Author(s):  
A. Sboev ◽  
R. Rybka ◽  
A. Serenko ◽  
D. Vlasov
2021 ◽  
Vol 1914 (1) ◽  
pp. 012036
Author(s):  
LI Wei ◽  
Zhu Wei-gang ◽  
Pang Hong-feng ◽  
Zhao Hong-yu

2020 ◽  
Vol 43 (13) ◽  
pp. 7802-7814 ◽  
Author(s):  
Alexander Sboev ◽  
Alexey Serenko ◽  
Roman Rybka ◽  
Danila Vlasov

2021 ◽  
Author(s):  
Jinxin Wei ◽  
Zhe Hou

<p>Inspire by nature world mode, a activation function is proposed. It is absolute function.Through test on mnist dataset and fully-connected neural network and convolutional neural network, some conclusions are put forward. The line of accuracy of absolute function is shaked around the training accuracy that is different from the line of accuracy of relu and leaky relu. The absolute function can keep the negative parts as equal as the positive parts, so the individualization is more active than relu and leaky relu function. The absolute function is less likely to be over-fitting. Through teat on mnist and autoencoder, It is that the leaky relu function can do classification task well, while the absolute function can do generation task well. Because the classification task need more universality and generation task need more individualization. The pleasure irritation and painful irritation is not only the magnitude differences, but also the sign differences, so the negative parts should keep as a part.<b></b>Stimulation which happens frequently is low value, it is showed around zero in figure 1 . Stimulation which happens accidentally is high value, it is showed far away from zero in figure 1. So the high value is the big stimulation, which is individualization.</p><p><b></b></p>


2021 ◽  
Author(s):  
Jinxin Wei ◽  
Zhe Hou

<p>Inspire by nature world mode, a activation function is proposed. It is absolute function.Through test on mnist dataset and fully-connected neural network and convolutional neural network, some conclusions are put forward. The line of accuracy of absolute function is shaked around the training accuracy that is different from the line of accuracy of relu and leaky relu. The absolute function can keep the negative parts as equal as the positive parts, so the individualization is more active than relu and leaky relu function. The absolute function is less likely to be over-fitting. Through teat on mnist and autoencoder, It is that the leaky relu function can do classification task well, while the absolute function can do generation task well. Because the classification task need more universality and generation task need more individualization. The pleasure irritation and painful irritation is not only the magnitude differences, but also the sign differences, so the negative parts should keep as a part.<b></b>Stimulation which happens frequently is low value, it is showed around zero in figure 1 . Stimulation which happens accidentally is high value, it is showed far away from zero in figure 1. So the high value is the big stimulation, which is individualization.</p><p><b></b></p>


2011 ◽  
Vol 21 (03) ◽  
pp. 187-198 ◽  
Author(s):  
ALEXANDER VIDYBIDA

Information about external world is delivered to the brain in the form of structured in time spike trains. During further processing in higher areas, information is subjected to a certain condensation process, which results in formation of abstract conceptual images of external world, apparently, represented as certain uniform spiking activity partially independent on the input spike trains details. Possible physical mechanism of condensation at the level of individual neuron was discussed recently. In a reverberating spiking neural network, due to this mechanism the dynamics should settle down to the same uniform/ periodic activity in response to a set of various inputs. Since the same periodic activity may correspond to different input spike trains, we interpret this as possible candidate for information condensation mechanism in a network. Our purpose is to test this possibility in a network model consisting of five fully connected neurons, particularly, the influence of geometric size of the network, on its ability to condense information. Dynamics of 20 spiking neural networks of different geometric sizes are modelled by means of computer simulation. Each network was propelled into reverberating dynamics by applying various initial input spike trains. We run the dynamics until it becomes periodic. The Shannon's formula is used to calculate the amount of information in any input spike train and in any periodic state found. As a result, we obtain explicit estimate of the degree of information condensation in the networks, and conclude that it depends strongly on the net's geometric size.


2019 ◽  
Vol 24 (3) ◽  
pp. 220-228
Author(s):  
Gusti Alfahmi Anwar ◽  
Desti Riminarsih

Panthera merupakan genus dari keluarga kucing yang memiliki empat spesies popular yaitu, harimau, jaguar, macan tutul, singa. Singa memiliki warna keemasan dan tidak memilki motif, harimau memiliki motif loreng dengan garis-garis panjang, jaguar memiliki tubuh yang lebih besar dari pada macan tutul serta memiliki motif tutul yang lebih lebar, sedangkan macan tutul memiliki tubuh yang sedikit lebih ramping dari pada jaguar dan memiliki tutul yang tidak terlalu lebar. Pada penelitian ini dilakukan klasifikasi genus panther yaitu harimau, jaguar, macan tutul, dan singa menggunakan metode Convolutional Neural Network. Model Convolutional Neural Network yang digunakan memiliki 1 input layer, 5 convolution layer, dan 2 fully connected layer. Dataset yang digunakan berupa citra harimau, jaguar, macan tutul, dan singa. Data training terdiri dari 3840 citra, data validasi sebanyak 960 citra, dan data testing sebanyak 800 citra. Hasil akurasi dari pelatihan model untuk training yaitu 92,31% dan validasi yaitu 81,88%, pengujian model menggunakan dataset testing mendapatan hasil 68%. Hasil akurasi prediksi didapatkan dari nilai F1-Score pada pengujian didapatkan sebesar 78% untuk harimau, 70% untuk jaguar, 37% untuk macan tutul, 74% untuk singa. Macan tutul mendapatkan akurasi terendah dibandingkan 3 hewan lainnya tetapi lebih baik dibandingkan hasil penelitian sebelumnya.


Sign in / Sign up

Export Citation Format

Share Document