generation task
Recently Published Documents


TOTAL DOCUMENTS

266
(FIVE YEARS 80)

H-INDEX

29
(FIVE YEARS 4)

2022 ◽  
Vol 40 (3) ◽  
pp. 1-29
Author(s):  
Peijie Sun ◽  
Le Wu ◽  
Kun Zhang ◽  
Yu Su ◽  
Meng Wang

Review based recommendation utilizes both users’ rating records and the associated reviews for recommendation. Recently, with the rapid demand for explanations of recommendation results, reviews are used to train the encoder–decoder models for explanation text generation. As most of the reviews are general text without detailed evaluation, some researchers leveraged auxiliary information of users or items to enrich the generated explanation text. Nevertheless, the auxiliary data is not available in most scenarios and may suffer from data privacy problems. In this article, we argue that the reviews contain abundant semantic information to express the users’ feelings for various aspects of items, while these information are not fully explored in current explanation text generation task. To this end, we study how to generate more fine-grained explanation text in review based recommendation without any auxiliary data. Though the idea is simple, it is non-trivial since the aspect is hidden and unlabeled. Besides, it is also very challenging to inject aspect information for generating explanation text with noisy review input. To solve these challenges, we first leverage an advanced unsupervised neural aspect extraction model to learn the aspect-aware representation of each review sentence. Thus, users and items can be represented in the aspect space based on their historical associated reviews. After that, we detail how to better predict ratings and generate explanation text with the user and item representations in the aspect space. We further dynamically assign review sentences which contain larger proportion of aspect words with larger weights to control the text generation process, and jointly optimize rating prediction accuracy and explanation text generation quality with a multi-task learning framework. Finally, extensive experimental results on three real-world datasets demonstrate the superiority of our proposed model for both recommendation accuracy and explainability.


2022 ◽  
Vol 12 ◽  
Author(s):  
Daniel Gaffiero ◽  
Paul Staples ◽  
Vicki Staples ◽  
Frances A. Maratos

Adults with chronic pain interpret ambiguous information in a pain and illness related fashion. However, limitations have been highlighted with traditional experimental paradigms used to measure interpretation biases. Whilst ambiguous scenarios have been developed to measure interpretation biases in adolescents with pain, no scenario sets exist for use with adults. Therefore, the present study: (i) sought to validate a range of ambiguous scenarios suitable for measuring interpretation biases in adults, whilst also allowing for two response formats (forced-choice and free response); and (ii) investigate paradigm efficacy, by assessing the effects of recent pain experiences on task responding. A novel ambiguous scenarios task was administered to adults (N = 241). Participants were presented with 62 ambiguous scenarios comprising 42 that could be interpreted in a pain/pain-illness or non-pain/non-pain illness manner: and 20 control scenarios. Participants generated their own solutions to each scenario (Word Generation Task), then rated how likely they would be to use two researcher-generated solutions to complete each scenario (Likelihood Ratings Task). Participants also rated their subjective experiences of pain in the last 3 months. Tests of reliability, including inter-rater agreement and internal consistency, produced two ambiguous scenario stimulus sets containing 18 and 20 scenarios, respectively. Further analyses revealed adults who reported more recent pain experiences were more likely to endorse the pain/pain-illness solutions in the Likelihood Ratings Task. This study provides two new stimulus sets for use with adults (including control items) in pain research and/or interventions. Results also provide evidence for a negative endorsement bias in adults.


2021 ◽  
Author(s):  
Jinxin Wei ◽  
Zhe Hou

<p>Inspire by nature world mode, a activation function is proposed. It is absolute function.Through test on mnist dataset and fully-connected neural network and convolutional neural network, some conclusions are put forward. The line of accuracy of absolute function is shaked around the training accuracy that is different from the line of accuracy of relu and leaky relu. The absolute function can keep the negative parts as equal as the positive parts, so the individualization is more active than relu and leaky relu function. The absolute function is less likely to be over-fitting. Through teat on mnist and autoencoder, It is that the leaky relu function can do classification task well, while the absolute function can do generation task well. Because the classification task need more universality and generation task need more individualization. The pleasure irritation and painful irritation is not only the magnitude differences, but also the sign differences, so the negative parts should keep as a part.<b></b>Stimulation which happens frequently is low value, it is showed around zero in figure 1 . Stimulation which happens accidentally is high value, it is showed far away from zero in figure 1. So the high value is the big stimulation, which is individualization.</p><p><b></b></p>


2021 ◽  
Author(s):  
Jinxin Wei ◽  
Zhe Hou

<p>Inspire by nature world mode, a activation function is proposed. It is absolute function.Through test on mnist dataset and fully-connected neural network and convolutional neural network, some conclusions are put forward. The line of accuracy of absolute function is shaked around the training accuracy that is different from the line of accuracy of relu and leaky relu. The absolute function can keep the negative parts as equal as the positive parts, so the individualization is more active than relu and leaky relu function. The absolute function is less likely to be over-fitting. Through teat on mnist and autoencoder, It is that the leaky relu function can do classification task well, while the absolute function can do generation task well. Because the classification task need more universality and generation task need more individualization. The pleasure irritation and painful irritation is not only the magnitude differences, but also the sign differences, so the negative parts should keep as a part.<b></b>Stimulation which happens frequently is low value, it is showed around zero in figure 1 . Stimulation which happens accidentally is high value, it is showed far away from zero in figure 1. So the high value is the big stimulation, which is individualization.</p><p><b></b></p>


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Paolo Andreini ◽  
Giorgio Ciano ◽  
Simone Bonechi ◽  
Caterina Graziani ◽  
Veronica Lachi ◽  
...  

In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality retinal images along with the corresponding semantic label-maps, instead of real images during training of a segmentation network. Different from other previous proposals, we employ a two-step approach: first, a progressively growing GAN is trained to generate the semantic label-maps, which describes the blood vessel structure (i.e., the vasculature); second, an image-to-image translation approach is used to obtain realistic retinal images from the generated vasculature. The adoption of a two-stage process simplifies the generation task, so that the network training requires fewer images with consequent lower memory usage. Moreover, learning is effective, and with only a handful of training samples, our approach generates realistic high-resolution images, which can be successfully used to enlarge small available datasets. Comparable results were obtained by employing only synthetic images in place of real data during training. The practical viability of the proposed approach was demonstrated on two well-established benchmark sets for retinal vessel segmentation—both containing a very small number of training samples—obtaining better performance with respect to state-of-the-art techniques.


2021 ◽  
Author(s):  
Richard W. Shuai ◽  
Jeffrey A. Ruffolo ◽  
Jeffrey J. Gray

Successful development of monoclonal antibodies (mAbs) for therapeutic applications is hindered by developability issues such as low solubility, low thermal stability, high aggregation, and high immunogenicity. The discovery of more developable mAb candidates relies on high-quality antibody libraries for isolating candidates with desirable properties. We present Immunoglobulin Language Model (IgLM), a deep generative language model for generating synthetic libraries by re-designing variable-length spans of antibody sequences. IgLM formulates antibody design as an autoregressive sequence generation task based on text-infilling in natural language. We trained IgLM on approximately 558M antibody heavy- and light-chain variable sequences, conditioning on each sequence's chain type and species-of-origin. We demonstrate that IgLM can be applied to generate synthetic libraries that may accelerate the discovery of therapeutic antibody candidates


PLoS ONE ◽  
2021 ◽  
Vol 16 (12) ◽  
pp. e0260859
Author(s):  
Nozomi Endo ◽  
Takayuki Ito ◽  
Katsumi Watanabe ◽  
Kimitaka Nakazawa

Musicians tend to have better auditory and motor performance than non-musicians because of their extensive musical experience. In a previous study, we established that loudness discrimination acuity is enhanced when sound is produced by a precise force generation task. In this study, we compared the enhancement effect between experienced pianists and non-musicians. Without the force generation task, loudness discrimination acuity was better in pianists than non-musicians in the condition. However, the force generation task enhanced loudness discrimination acuity similarly in both pianists and non-musicians. The reaction time was also reduced with the force control task, but only in the non-musician group. The results suggest that the enhancement of loudness discrimination acuity with the precise force generation task is independent of musical experience and is, therefore, a fundamental function in auditory-motor interaction.


2021 ◽  
Author(s):  
Samier Pierre ◽  
Raguenel Margaux ◽  
Darche Gilles

Abstract Solving the equations governing multiphase flow in geological formations involves the generation of a mesh that faithfully represents the structure of the porous medium. This challenging mesh generation task can be greatly simplified by the use of unstructured (tetrahedral) grids that conform to the complex geometric features present in the subsurface. However, running a million-cell simulation problem using an unstructured grid on a real, faulted field case remains a challenge for two main reasons. First, the workflow typically used to construct and run the simulation problems has been developed for structured grids and needs to be adapted to the unstructured case. Second, the use of unstructured grids that do not satisfy the K-orthogonality property may require advanced numerical schemes that preserve the accuracy of the results and reduce potential grid orientation effects. These two challenges are at the center of the present paper. We describe in detail the steps of our workflow to prepare and run a large-scale unstructured simulation of a real field case with faults. We perform the simulation using four different discretization schemes, including the cell-centered Two-Point and Multi-Point Flux Approximation (respectively, TPFA and MPFA) schemes, the cell- and vertex-centered Vertex Approximate Gradient (VAG) scheme, and the cell- and face-centered hybrid Mimetic Finite Difference (MFD) scheme. We compare the results in terms of accuracy, robustness, and computational cost to determine which scheme offers the best compromise for the test case considered here.


Author(s):  
Mert Oz ◽  
Caner Kaya ◽  
Erdi Olmezogullari ◽  
Mehmet S. Aktas

With the advent of web 2.0, web application architectures have been evolved, and their complexity has grown enormously. Due to the complexity, testing of web applications is getting time-consuming and intensive process. In today’s web applications, users can achieve the same goal by performing different actions. To ensure that the entire system is safe and robust, developers try to test all possible user action sequences in the testing phase. Since the space of all the possibilities is enormous, covering all user action sequences can be impossible. To automate the test script generation task and reduce the space of the possible user action sequences, we propose a novel method based on long short-term memory (LSTM) network for generating test scripts from user clickstream data. The experiment results clearly show that generated hidden test sequences are user-like sequences, and the process of generating test scripts with the proposed model is less time-consuming than writing them manually.


Sign in / Sign up

Export Citation Format

Share Document