Automated Data Acquisition and Controlling System in Housing Line Using Internet of Things (IoT)

Author(s):  
T. L. Pooja ◽  
M. Supreetha
Author(s):  
С.Л. Добрынин ◽  
В.Л. Бурковский

Произведен обзор технологий в рамках концепции четвертой промышленной революции, рассмотрены примеры реализации новых моделей управления технологическими процессами на базе промышленного интернета вещей. Описано техническое устройство основных подсистем системы мониторинга и контроля, служащей для повышения осведомленности о фактическом состоянии производственных ресурсов в особенности станков и аддитивного оборудования в режиме реального времени. Архитектура предлагаемой системы состоит из устройства сбора данных (УСД), реализующего быстрый и эффективный сбор данных от станков и шлюза, передающего ликвидную часть информации в облачное хранилище для дальнейшей обработки и анализа. Передача данных выполняется на двух уровнях: локально в цехе, с использованием беспроводной сенсорной сети (WSN) на базе стека протоколов ZigBee от устройства сбора данных к шлюзам и от шлюзов в облако с использованием интернет-протоколов. Разработан алгоритм инициализации протоколов связи между устройством сбора данных и шлюзом, а также алгоритм выявления неисправностей в сети. Расчет фактического времени обработки станочных подсистем позволяет более эффективно планировать профилактическое обслуживание вместо того, чтобы выполнять задачи обслуживания в фиксированные интервалы без учета времени использования оборудования We carried out a review of technologies within the framework of the concept of the fourth industrial revolution; we considered examples of the implementation of new models of process control based on the industrial Internet of things. We described the technical structure of the main subsystems of the monitoring and control system to increase awareness of the actual state of production resources in particular machine tools and additive equipment in real time. The architecture of the proposed system consists of a data acquisition device (DAD) that implements fast and efficient data collection from machines and a gateway that transfers the liquid part of information to the cloud storage for further processing and analysis. We carried out the data transmission at two levels, locally in the workshop, using a wireless sensor network (WSN) based on ZigBee protocol stack from the data acquisition device to the gateways and from the gateways to the cloud using Internet protocols. An algorithm was developed for initializing communication protocols between a data acquisition device and a gateway, as well as an algorithm for detecting network malfunctions. Calculating the actual machining time of machine subsystems allows us to more efficiently scheduling preventive maintenance rather than performing maintenance tasks at fixed intervals without considering equipment usage


Author(s):  
Leonardo J. Gutierrez ◽  
Kashif Rabbani ◽  
Oluwashina Joseph Ajayi ◽  
Samson Kahsay Gebresilassie ◽  
Joseph Rafferty ◽  
...  

The increase of mental illness cases around the world can be described as an urgent and serious global health threat. Around 500 million people suffer from mental disorders, among which depression, schizophrenia, and dementia are the most prevalent. Revolutionary technological paradigms such as the Internet of Things (IoT) provide us with new capabilities to detect, assess, and care for patients early. This paper comprehensively survey works done at the intersection between IoT and mental health disorders. We evaluate multiple computational platforms, methods and devices, as well as study results and potential open issues for the effective use of IoT systems in mental health. We particularly elaborate on relevant open challenges in the use of existing IoT solutions for mental health care, which can be relevant given the potential impairments in some mental health patients such as data acquisition issues, lack of self-organization of devices and service level agreement, and security, privacy and consent issues, among others. We aim at opening the conversation for future research in this rather emerging area by outlining possible new paths based on the results and conclusions of this work.


2021 ◽  
Vol 1125 (1) ◽  
pp. 012073
Author(s):  
Haryanto ◽  
L Anifah ◽  
D Rahmawati ◽  
A K Sahputra ◽  
D T Laksono

2021 ◽  
pp. 1351010X2098690
Author(s):  
Romana Rust ◽  
Achilleas Xydis ◽  
Kurt Heutschi ◽  
Nathanael Perraudin ◽  
Gonzalo Casas ◽  
...  

In this paper, we present a novel interdisciplinary approach to study the relationship between diffusive surface structures and their acoustic performance. Using computational design, surface structures are iteratively generated and 3D printed at 1:10 model scale. They originate from different fabrication typologies and are designed to have acoustic diffusion and absorption effects. An automated robotic process measures the impulse responses of these surfaces by positioning a microphone and a speaker at multiple locations. The collected data serves two purposes: first, as an exploratory catalogue of different spatio-temporal-acoustic scenarios and second, as data set for predicting the acoustic response of digitally designed surface geometries using machine learning. In this paper, we present the automated data acquisition setup, the data processing and the computational generation of diffusive surface structures. We describe first results of comparative studies of measured surface panels and conclude with steps of future research.


2008 ◽  
Vol 16 (6) ◽  
pp. 36-39 ◽  
Author(s):  
E. Voelkl ◽  
B. Jiang ◽  
Z.R. Dai ◽  
J.P Bradley

Image acquisition with a CCD camera is a single-press-button activity: after selecting exposure time and adjusting illumination, a button is pressed and the acquired image is perceived as the final, unmodified proof of what was seen in the microscope. Thus it is generally assumed that the image processing steps of e.g., “darkcurrent correction” and “gain normalization” do not alter the information content of the image, but rather eliminate unwanted artifacts.


Sign in / Sign up

Export Citation Format

Share Document