Rice Yield Prediction Using On-Farm Data Sets and Machine Learning

Author(s):  
Oscar Barrero ◽  
Sofiane Ouazaa ◽  
Camilo Ignacio Jaramillo-Barrios ◽  
Mauricio Quevedo ◽  
Nesrine Chaali ◽  
...  
2020 ◽  
Author(s):  
Sofiane Ouazaa ◽  
Oscar Barrero ◽  
Yeison Mauricio Quevedo Amaya ◽  
Nesrine Chaali ◽  
Omar Montenegro Ramos

<p>In the valley of the Alto Magdalena, Colombia, intensive agriculture and inefficient soil and water management techniques have generated a within field yield spatial variability, which have increased the production costs for the rice-based cropping system (rice, cotton and maize crops rotation field). Crop yield variations depend on the interaction between climate, soil, topography and management, and it is strongly influenced by the spatial and temporal availabilities of water and nutrients in the soil during the crop growth season. Understanding why the yield in certain portions of a field has a high variability is of paramount importance both from an economic and an environmental point of view, as it is through the better management of these areas that we can improve yields or reduce input costs and environmental impact. The aim of this study was 1) to predict rice yield using on farm data set and machine learning and 2) to compare delimited management zones (MZ) for rice-based cropping system with physiological parameters and within field variation yield.</p><p>A 72 sampling points spatially distributed were defined in a 5 hectares plot at the research center Nataima, Agrosavia. For each sampling point, physical and chemical properties, biomass and relative chlorophyll content were determined at different vegetative stages. A multispectral camera mounted to an Unmanned Aerial Vehicle (UAV) was used to acquire multispectral images over the rice canopy in order to estimate vegetation indices. Five nonlinear models and two multilinear algorithms were employed to estimate rice yield. The fuzzy cluster analysis algorithm was used to classify soil data into two to six MZ. The appropriate number of MZ was determined according to the results of a fuzziness performance index and normalized classification entropy.</p><p>Results of the rice yield prediction model showed that the best performance was obtained by K-Nearest Neighbors (KNN) regression algorithm with an average absolute error of 10.74%. Nonetheless, the performance of the other algorithms was acceptable except the Multiple Linear regression (MLR). The MLR showed the highest RMSE with 2712.26 kg.ha<sup>-1</sup> in the testing dataset, while KNN regression was the best with 1029.69 kg.ha<sup>-1</sup>. These findings show the importance of machine learning could have for supporting decisions in agriculture processes management.</p><p>The cluster analyses revealed that two zones was the optimal number of classes based on different criteria. Delineated zones were evaluated and revealed significant differences (p≤0.05) in sand, apparent density, total porosity, pH, organic matter, phosphorus, calcium, magnesium, iron, zinc, cover and boron. The relative chlorophyll content of cotton and maize crops showed a similar spatial distribution pattern to delimited MZ. The results demonstrate the ability of the proposed procedure to delineate a farmer’s field into zones based on spatially varying soil and crop properties that should be considered for irrigation and fertilization management.</p>


2021 ◽  
Author(s):  
Akhil Wilson ◽  
Raji Sukumar ◽  
N. Hemalatha

Abstract The prediction of agriculture yield is the one of the challenging problem in smart farming, we have predicted the yield of rice in the state of Kerala, India with the help of Machine Learning by considering the soil properties, micro climatic condition and area of the rice. Here we have used Decision Tree Regression, Random Forest Regression, Linear Regression, K Nearest Neighbour Regression, Xgboost Regression and Support Vector Regression algorithms in order to predict the rice yield. From the experiments we got KNN regression to be the best with 98.77% accuracy.


Author(s):  
A. Chandra ◽  
P. Mitra ◽  
S. K. Dubey ◽  
S. S. Ray

<p><strong>Abstract.</strong> The development of kharif rice yield prediction models was attempted through Machine Learning approaches such as Artificial Neural Network and Random Forest for the 42 blocks covering 13,141&amp;thinsp;sq&amp;thinsp;km upland rainfed area of Purulia and Bankura district, West Bengal. Models were developed integrating monthly NDVI with weather and non-weather variables at block-level for the period 2006 to 2015. The model correlation obtained was 0.702 with MSE 0.01. Though the weather variables vs NDVI models are quite satisfactory, NDVI vs kharif rice yield models however, show relatively less correlation, about 0.6 revealing the requirement of varied additional farmer-controlled inputs. Development of NDVI vs crop yield models for different crop growth stages or fortnightly over a larger data set with selective adding of weather and non-weather variables to NDVI would be the most appropriate.</p>


2021 ◽  
Vol 297 ◽  
pp. 108275
Author(s):  
Juan Cao ◽  
Zhao Zhang ◽  
Fulu Tao ◽  
Liangliang Zhang ◽  
Yuchuan Luo ◽  
...  

2021 ◽  
Vol 34 (2) ◽  
pp. 541-549 ◽  
Author(s):  
Leihong Wu ◽  
Ruili Huang ◽  
Igor V. Tetko ◽  
Zhonghua Xia ◽  
Joshua Xu ◽  
...  

2021 ◽  
Vol 13 (13) ◽  
pp. 2433
Author(s):  
Shu Yang ◽  
Fengchao Peng ◽  
Sibylle von Löwis ◽  
Guðrún Nína Petersen ◽  
David Christian Finger

Doppler lidars are used worldwide for wind monitoring and recently also for the detection of aerosols. Automatic algorithms that classify the lidar signals retrieved from lidar measurements are very useful for the users. In this study, we explore the value of machine learning to classify backscattered signals from Doppler lidars using data from Iceland. We combined supervised and unsupervised machine learning algorithms with conventional lidar data processing methods and trained two models to filter noise signals and classify Doppler lidar observations into different classes, including clouds, aerosols and rain. The results reveal a high accuracy for noise identification and aerosols and clouds classification. However, precipitation detection is underestimated. The method was tested on data sets from two instruments during different weather conditions, including three dust storms during the summer of 2019. Our results reveal that this method can provide an efficient, accurate and real-time classification of lidar measurements. Accordingly, we conclude that machine learning can open new opportunities for lidar data end-users, such as aviation safety operators, to monitor dust in the vicinity of airports.


2021 ◽  
pp. 1-36
Author(s):  
Henry Prakken ◽  
Rosa Ratsma

This paper proposes a formal top-level model of explaining the outputs of machine-learning-based decision-making applications and evaluates it experimentally with three data sets. The model draws on AI & law research on argumentation with cases, which models how lawyers draw analogies to past cases and discuss their relevant similarities and differences in terms of relevant factors and dimensions in the problem domain. A case-based approach is natural since the input data of machine-learning applications can be seen as cases. While the approach is motivated by legal decision making, it also applies to other kinds of decision making, such as commercial decisions about loan applications or employee hiring, as long as the outcome is binary and the input conforms to this paper’s factor- or dimension format. The model is top-level in that it can be extended with more refined accounts of similarities and differences between cases. It is shown to overcome several limitations of similar argumentation-based explanation models, which only have binary features and do not represent the tendency of features towards particular outcomes. The results of the experimental evaluation studies indicate that the model may be feasible in practice, but that further development and experimentation is needed to confirm its usefulness as an explanation model. Main challenges here are selecting from a large number of possible explanations, reducing the number of features in the explanations and adding more meaningful information to them. It also remains to be investigated how suitable our approach is for explaining non-linear models.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chinmay P. Swami ◽  
Nicholas Lenhard ◽  
Jiyeon Kang

AbstractProsthetic arms can significantly increase the upper limb function of individuals with upper limb loss, however despite the development of various multi-DoF prosthetic arms the rate of prosthesis abandonment is still high. One of the major challenges is to design a multi-DoF controller that has high precision, robustness, and intuitiveness for daily use. The present study demonstrates a novel framework for developing a controller leveraging machine learning algorithms and movement synergies to implement natural control of a 2-DoF prosthetic wrist for activities of daily living (ADL). The data was collected during ADL tasks of ten individuals with a wrist brace emulating the absence of wrist function. Using this data, the neural network classifies the movement and then random forest regression computes the desired velocity of the prosthetic wrist. The models were trained/tested with ADLs where their robustness was tested using cross-validation and holdout data sets. The proposed framework demonstrated high accuracy (F-1 score of 99% for the classifier and Pearson’s correlation of 0.98 for the regression). Additionally, the interpretable nature of random forest regression was used to verify the targeted movement synergies. The present work provides a novel and effective framework to develop an intuitive control for multi-DoF prosthetic devices.


Author(s):  
Janmejay Pant ◽  
R.P. Pant ◽  
Manoj Kumar Singh ◽  
Devesh Pratap Singh ◽  
Himanshu Pant

Sign in / Sign up

Export Citation Format

Share Document