Remote Sensing
Latest Publications


TOTAL DOCUMENTS

19339
(FIVE YEARS 12596)

H-INDEX

116
(FIVE YEARS 31)

Published By Mdpi Ag

2072-4292

2022 ◽  
Vol 14 (2) ◽  
pp. 403
Author(s):  
Chongdi Duan ◽  
Yu Li ◽  
Weiwei Wang ◽  
Jianguo Li

With the rapid development of cooperative detection technology, target fusion detection with regard of LEO satellites can be realized by means of their diverse observation configurations. However, the existing constant false alarm ratio (CFAR) detection research rarely involves the space-based target fusion detection theory. In this paper, a novel multi-source fusion detection method based on LEO satellites is presented. Firstly, the pre-compensation function is constructed by employing the range and Doppler history of the cell where the antenna beam center is pointed. As a result, not only is the Doppler band broadening problem caused by the high-speed movement of the satellite platform, but the Doppler frequency rate (DFR) offset issue resulted from different observation configurations are alleviated synchronously. Then, the theoretical upper and lower limits of DFR are designed to achieve the effective clutter suppression and the accurate target echo fusion. Finally, the CFAR detection threshold based on the exponential weighted likelihood ratio is derived, which effectively increases the contrast ratio between the target cell and other background cells, and thus to provide an effective multi-source fusion detection method for LEO-based satellite constellation. Simulation results verify the effectiveness of the proposed algorithm.


2022 ◽  
Vol 14 (2) ◽  
pp. 406
Author(s):  
Yong Xie ◽  
Yi Su ◽  
Xingfa Gu ◽  
Tiexi Chen ◽  
Wen Shao ◽  
...  

Accurate and updated aerosol optical properties (AOPs) are of vital importance to climatology and environment-related studies for assessing the radiative impact of natural and anthropogenic aerosols. We comprehensively studied the columnar AOP observations between January 2019 and July 2020 from a ground-based remote sensing instrument located at a rural site operated by Central China Comprehensive Experimental Sites in the center of the Yangtze River Delta (YRD) region. In order to further study the aerosol type, two threshold-based aerosol classification methods were used to investigate the potential categories of aerosol particles under different aerosol loadings. Based on AOP observation and classification results, the potential relationships between the above-mentioned results and meteorological factors (i.e., humidity) and long-range transportation processes were analyzed. According to the results, obvious variation in aerosol optical depth (AOD) during the daytime, as well as throughout the year, was revealed. Investigation into AOD, single-scattering albedo (SSA), and absorption aerosol optical depth (AAOD) revealed the dominance of fine-mode aerosols with low absorptivity. According to the results of the two aerosol classification methods, the dominant aerosol types were continental (accounting for 43.9%, method A) and non-absorbing aerosols (62.5%, method B). Longer term columnar AOP observations using remote sensing alongside other techniques in the rural areas in East China are still needed for accurate parameterization in the future.


2022 ◽  
Vol 14 (2) ◽  
pp. 399
Author(s):  
Xueyuan Tang ◽  
Sheng Dong ◽  
Kun Luo ◽  
Jingxue Guo ◽  
Lin Li ◽  
...  

The airborne ice-penetrating radar (IPR) is an effective method used for ice sheet exploration and is widely applied for detecting the internal structures of ice sheets and for understanding the mechanism of ice flow and the characteristics of the bottom of ice sheets. However, because of the ambient influence and the limitations of the instruments, IPR data are frequently overlaid with noise and interference, which further impedes the extraction of layer features and the interpretation of the physical characteristics of the ice sheet. In this paper, we first applied conventional filtering methods to remove the feature noise and interference in IPR data. Furthermore, machine learning methods were introduced in IPR data processing for noise removal and feature extraction. Inspired by a comparison of the filtering methods and machine learning methods, we propose a fusion method combining both filtering methods and machine-learning-based methods to optimize the feature extraction in IPR data. Field data tests indicated that, under different conditions of IPR data, the application of different methods and strategies can improve the layer feature extraction.


2022 ◽  
Vol 14 (2) ◽  
pp. 404
Author(s):  
Yaqing Gou ◽  
Casey M. Ryan ◽  
Johannes Reiche

Soil moisture effects limit radar-based aboveground biomass carbon (AGBC) prediction accuracy as well as lead to stripes between adjacent paths in regional mosaics due to varying soil moisture conditions on different acquisition dates. In this study, we utilised the semi-empirical water cloud model (WCM) to account for backscattering from soil moisture in AGBC retrieval from L-band radar imagery in central Mozambique, where woodland ecosystems dominate. Cross-validation results suggest that (1) the standard WCM effectively accounts for soil moisture effects, especially for areas with AGBC ≤ 20 tC/ha, and (2) the standard WCM significantly improved the quality of regional AGBC mosaics by reducing the stripes between adjacent paths caused by the difference in soil moisture conditions between different acquisition dates. By applying the standard WCM, the difference in mean predicted AGBC for the tested path with the largest soil moisture difference was reduced by 18.6%. The WCM is a valuable tool for AGBC mapping by reducing prediction uncertainties and striping effects in regional mosaics, especially in low-biomass areas including African woodlands and other woodland and savanna regions. It is repeatable for recent L-band data including ALOS-2 PALSAR-2, and upcoming SAOCOM and NISAR data.


2022 ◽  
Vol 14 (2) ◽  
pp. 401
Author(s):  
Mokhamad Nur Cahyadi ◽  
Buldan Muslim ◽  
Danar Guruh Pratomo ◽  
Ira Mutiara Anjasmara ◽  
Deasy Arisa ◽  
...  

The study of ionospheric disturbances associated with the two large strike-slip earthquakes in Indonesia was investigated, which are West Sumatra on 2 March 2016 (Mw = 7.8), and Palu on 28 September 2018 (Mw = 7.5). The anomalies were observed by measuring co-seismic ionospheric disturbances (CIDs) using the Global Navigation Satellite System (GNSS). The results show positive and negative CIDs polarization changes for the 2016 West Sumatra earthquake, depending on the position of the satellite line-of-sight, while the 2018 Palu earthquake shows negative changes only due to differences in co-seismic vertical crustal displacement. The 2016 West Sumatra earthquake caused uplift and subsidence, while the 2018 Palu earthquake was dominated by subsidence. TEC anomalies occurred about 10 to 15 min after the two earthquakes with amplitude of 2.9 TECU and 0.4 TECU, respectively. The TEC anomaly amplitude was also affected by the magnitude of the earthquake moment. The disturbance signal propagated with a velocity of ~1–1.72 km s−1 for the 2016 West Sumatra earthquake and ~0.97–1.08 km s−1 for the 2018 Palu mainshock earthquake, which are consistent with acoustic waves. The wave also caused an oscillation signal of ∼4 mHz, and their azimuthal asymmetry of propagation confirmed the phenomena in the Southern Hemisphere. The CID signal could be identified at a distance of around 400–1500 km from the epicenter in the southwestern direction.


2022 ◽  
Vol 14 (2) ◽  
pp. 402
Author(s):  
Xinchao Xu ◽  
Mingyue Liu ◽  
Song Peng ◽  
Youqing Ma ◽  
Hongxi Zhao ◽  
...  

In order to complete the high-precision calibration of the planetary rover navigation camera using limited initial data in-orbit, we proposed a joint adjustment model with additional multiple constraints. Specifically, a base model was first established based on the bundle adjustment model, second-order radial and tangential distortion parameters. Then, combining the constraints of collinearity, coplanarity, known distance and relative pose invariance, a joint adjustment model was constructed to realize the in orbit self-calibration of the navigation camera. Given the problem of directionality in line extraction of the solar panel due to large differences in the gradient amplitude, an adaptive brightness-weighted line extraction method was proposed. Lastly, the Levenberg-Marquardt algorithm for nonlinear least squares was used to obtain the optimal results. To verify the proposed method, field experiments and in-orbit experiments were carried out. The results suggested that the proposed method was more accurate than the self-calibration bundle adjustment method, CAHVOR method (a camera model used in machine vision for three-dimensional measurements), and vanishing points method. The average error for the flag of China and the optical solar reflector was only 1 mm and 0.7 mm, respectively. In addition, the proposed method has been implemented in China’s deep space exploration missions.


2022 ◽  
Vol 14 (2) ◽  
pp. 407
Author(s):  
Jongjin Seo ◽  
Haklim Choi ◽  
Young-Suk Oh

Aerosols in the atmosphere play an essential role in the radiative transfer process due to their scattering, absorption, and emission. Moreover, they interrupt the retrieval of atmospheric properties from ground-based and satellite remote sensing. Thus, accurate aerosol information needs to be obtained. Herein, we developed an optimal-estimation-based aerosol optical depth (AOD) retrieval algorithm using the hyperspectral infrared downwelling emitted radiance of the Atmospheric Emitted Radiance Interferometer (AERI). The proposed algorithm is based on the phenomena that the thermal infrared radiance measured by a ground-based remote sensor is sensitive to the thermodynamic profile and degree of the turbid aerosol in the atmosphere. To assess the performance of algorithm, AERI observations, measured throughout the day on 21 October 2010 at Anmyeon, South Korea, were used. The derived thermodynamic profiles and AODs were compared with those of the European center for a reanalysis of medium-range weather forecasts version 5 and global atmosphere watch precision-filter radiometer (GAW-PFR), respectively. The radiances simulated with aerosol information were more suitable for the AERI-observed radiance than those without aerosol (i.e., clear sky). The temporal variation trend of the retrieved AOD matched that of GAW-PFR well, although small discrepancies were present at high aerosol concentrations. This provides a potential possibility for the retrieval of nighttime AOD.


2022 ◽  
Vol 14 (2) ◽  
pp. 405
Author(s):  
Kay Wohlfarth ◽  
Christian Wöhler

Telescopic observations of Mercury consistently report systematic variations of the normalized spectral slope of visible-to-near-infrared reflectance spectra. This effect was previously assumed to be a photometric property of the regolith, but it is not yet fully understood. After the MESSENGER mission, detailed global spectral maps of Mercury are available that better constrain Mercury’s photometry. So far, wavelength-dependent seeing has not been considered in the context of telescopic observations of Mercury. This study investigates the effect of wavelength-dependent seeing on systematic variations of Mercury’s normalized spectral reflectance slope. Therefore, we simulate the disk of Mercury for an idealized scenario, as seen by four different telescopic campaigns using the Hapke and the Kaasalainen–Shkuratov photometric model, the MDIS global mosaic, and a simple wavelength-dependent seeing model. The simulation results are compared with the observations of previous telescopic studies. We find that wavelength-dependent seeing affects the normalized spectral slope in several ways. The normalized slopes are enhanced near the limb, decrease toward the rim of the seeing disk, and even become negative. The decrease of the normalized spectral slope is consistent with previous observations. However, previous studies have associated the spectral slope variations with photometric effects that correlate with the emission angle. Our study suggests that wavelength-dependent seeing may cause these systematic variations. The combined reflectance and seeing model can also account for slope variations between different measurement campaigns. We report no qualitative differences between results based on the Hapke model or the Kaasalainen–Shkuratov model.


2022 ◽  
Vol 14 (2) ◽  
pp. 392
Author(s):  
Lei Qiao ◽  
Gang Chen ◽  
Wanlin Gong ◽  
Xuesi Cai ◽  
Erxiao Liu ◽  
...  

The Wuhan Ionospheric Oblique Backscatter Sounding System (WIOBSS) was applied as a bistatic radar to record the ionospheric E-region responses to a solar eclipse on 22 July 2009. The transmitter was located in Wuhan and the receiver was located in Huaian. The receiver observed anomalous echoes with larger Doppler shifts at the farther ranges compared with the echoes reflected by Es. According to the simulated ray propagation paths of the reflected and scattered waves, we considered that the anomalous echoes were scattered by E-region field-aligned irregularities (FAIs). The locations of the FAIs recorded by the WIOBSS were estimated with the International Geomagnetic Reference Field (IGRF) and the observed propagation parameters. These irregularities occurred at around the eclipse maximum and lasted for ~20–40 min. The steep plasma density gradient induced by the fast drop photo ionization under the lunar shadow was beneficial to the occurrence of gradient drift instability to generate the FAIs. They were different from the gravity wave-induced irregularities occurring in the recovery phase of the solar eclipse.


2022 ◽  
Vol 14 (2) ◽  
pp. 398
Author(s):  
Pieter Kempeneers ◽  
Tomas Kliment ◽  
Luca Marletta ◽  
Pierre Soille

This paper is on the optimization of computing resources to process geospatial image data in a cloud computing infrastructure. Parallelization was tested by combining two different strategies: image tiling and multi-threading. The objective here was to get insight on the optimal use of available processing resources in order to minimize the processing time. Maximum speedup was obtained when combining tiling and multi-threading techniques. Both techniques are complementary, but a trade-off also exists. Speedup is improved with tiling, as parts of the image can run in parallel. But reading part of the image introduces an overhead and increases the relative part of the program that can only run in serial. This limits speedup that can be achieved via multi-threading. The optimal strategy of tiling and multi-threading that maximizes speedup depends on the scale of the application (global or local processing area), the implementation of the algorithm (processing libraries), and on the available computing resources (amount of memory and cores). A medium-sized virtual server that has been obtained from a cloud service provider has rather limited computing resources. Tiling will not only improve speedup but can be necessary to reduce the memory footprint. However, a tiling scheme with many small tiles increases overhead and can introduce extra latency due to queued tiles that are waiting to be processed. In a high-throughput computing cluster with hundreds of physical processing cores, more tiles can be processed in parallel, and the optimal strategy will be different. A quantitative assessment of the speedup was performed in this study, based on a number of experiments for different computing environments. The potential and limitations of parallel processing by tiling and multi-threading were hereby assessed. Experiments were based on an implementation that relies on an application programming interface (API) abstracting any platform-specific details, such as those related to data access.


Sign in / Sign up

Export Citation Format

Share Document