Generating 3D City Models from Open LiDAR Point Clouds: Advancing Towards Smart City Applications

Author(s):  
Sebastián Ortega ◽  
José Miguel Santana ◽  
Jochen Wendel ◽  
Agustín Trujillo ◽  
Syed Monjur Murshed
Author(s):  
O. Wysocki ◽  
B. Schwab ◽  
L. Hoegner ◽  
T. H. Kolbe ◽  
U. Stilla

Abstract. Nowadays, the number of connected devices providing unstructured data is rapidly rising. These devices acquire data with a temporal and spatial resolution at an unprecedented level creating an influx of geoinformation which, however, lacks semantic information. Simultaneously, structured datasets like semantic 3D city models are widely available and assure rich semantics and high global accuracy but are represented by rather coarse geometries. While the mentioned downsides curb the usability of these data types for nowadays’ applications, the fusion of both shall maximize their potential. Since testing and developing automated driving functions stands at the forefront of the challenges, we propose a pipeline fusing structured (CityGML and HD Map datasets) and unstructured datasets (MLS point clouds) to maximize their advantages in the automatic 3D road space models reconstruction domain. The pipeline is a parameterized end-to-end solution that integrates segmentation, reconstruction, and modeling tasks while ensuring geometric and semantic validity of models. Firstly, the segmentation of point clouds is supported by the transfer of semantics from a structured to an unstructured dataset. The distinction between horizontal- and vertical-like point cloud subsets enforces a further segmentation or an immediate refinement while only adequately depicted models by point clouds are allowed. Then, based on the classified and filtered point clouds the input 3D model geometries are refined. Building upon the refinement, the semantic enrichment of the 3D models is presented. The deployment of a simulation engine for automated driving research and a city model database tool underlines the versatility of possible application areas.


2021 ◽  
Author(s):  
Lukas Lucks ◽  
Lasse Klingbeil ◽  
Lutz Plümer ◽  
Youness Dehbi

Author(s):  
G. Bitelli ◽  
V. A. Girelli ◽  
A. Lambertini

3D city models are becoming increasingly popular and important, because they constitute the base for all the visualization, planning, management operations regarding the urban infrastructure. These data are however not available in the majority of cities: in this paper, the possibility to use geospatial data of various kinds with the aim to generate 3D models in urban environment is investigated.<br> In 3D modelling works, the starting data are frequently the 3D point clouds, which are nowadays possible to collect by different sensors mounted on different platforms: LiDAR, imagery from satellite, airborne or unmanned aerial vehicles, mobile mapping systems that integrate several sensors. The processing of the acquired data and consequently the obtainability of models able to provide geometric accuracy and a good visual impact is limited by time, costs and logistic constraints.<br> Nowadays more and more innovative hardware and software solutions can offer to the municipalities and the public authorities the possibility to use available geospatial data, acquired for diverse aims, for the generation of 3D models of buildings and cities, characterized by different level of detail.<br> In the paper two cases of study are presented, both regarding surveys carried out in Emilia Romagna region, Italy, where 2D or 2.5D numerical maps are available. The first one is about the use of oblique aerial images realized by the Municipality for a systematic documentation of the built environment, the second concerns the use of LiDAR data acquired for other purposes; in the two tests, these data were used in conjunction with large scale numerical maps to produce 3D city models.


Introduction of the problem. The paper emphasizes that the key features of the contemporary urban development have caused a number of challengers, which require the innovative technological introductions in urban studies. The research goal of this paper means representing a multifunctional approach, which combines author’s urbogeosystem (UGS) theory with the URS (Urban Remote Sensing) technique for LiDAR (Light Detection And Ranging) data processing. The key elements of the Smart City concept within a geospatial perspective. Three basic assumptions are implied due to the affiliation “a geospatial perspective ó the Smart City concept” (SCC). The five key elements of the SCC have been outlined: Innovations; Scalability; Data gathering, measuring, and mining; Addressing environmental challengers; Interlink between the smart meter information and the geo-sensor information. The urbogeosystemic approach as a tool for simulating the “smart urban environment” – a core node of the Smart City hierarchy. The urbogeosystemic ontological model has been introduced as a trinity-tripod (urban citizens, municipal infrastructure, urbanistic processes and phenomena). The “smart urban environment” is a core node of an urbogeosystem. Processing results of LiDAR surveying technique. With increasing availability of LiDAR data, 3D city models of robust topology and correct geometry have become the most prominent features of the urban environment. Three key advantages of the LiDAR surveying technique have been introduced. The flowchart of the operational URS / LiDAR / GIS workflow for the Smart City implementation has been depicted. Urban Remote Sensing for data mining / city analytics and the EOS LiDAR Tool. ELiT (EOS LiDAR Tool) software is both a separate web-based (network) generator (an engine) – ELiT Server, and an integrated component of EOS Platform-as-a-Service software – ELiT Cloud. The allied one to these two products is our desktop ElitCore software, that possesses even broader functionality. The paper outlines the whole framework of urban data mining / city analytics relevant to the mentioned applications. The ELiT software use cases for the Smart Cities. A number of use cases that can be completed with the ELiT software in the common urban planning domain have been described and illustrated. Each from five scenarios presented suggests some unique solution within the frameworks of the SCC implementation. Conclusion, future research and developments. The completed research results have been summarized. An entity of the urban geoinformation space has been introduced. A geodatabase of ELiT 3D city models has been assigned a mandatory key component of the urban decision support system.


Author(s):  
F. Prandi ◽  
M. Soave ◽  
F. Devigili ◽  
M. Andreolli ◽  
R. De Amicis

The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). <br><br> The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. <br><br> In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. <br><br> The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.


Author(s):  
C. Beil ◽  
T. Kutzner ◽  
B. Schwab ◽  
B. Willenborg ◽  
A. Gawronski ◽  
...  

Abstract. A range of different and increasingly accessible acquisition methods, the possibility for frequent data updates of large areas, and a simple data structure are some of the reasons for the popularity of three-dimensional (3D) point cloud data. While there are multiple techniques for segmenting and classifying point clouds, capabilities of common data formats such as LAS for providing semantic information are mostly limited to assigning points to a certain category (classification). However, several fields of application, such as digital urban twins used for simulations and analyses, require more detailed semantic knowledge. This can be provided by semantic 3D city models containing hierarchically structured semantic and spatial information. Although semantic models are often reconstructed from point clouds, they are usually geometrically less accurate due to generalization processes. First, point cloud data structures / formats are discussed with respect to their semantic capabilities. Then, a new approach for integrating point clouds with semantic 3D city models is presented, consequently combining respective advantages of both data types. In addition to elaborate (and established) semantic concepts for several thematic areas, the new version 3.0 of the international Open Geospatial Consortium (OGC) standard CityGML also provides a PointCloud module. In this paper a scheme is shown, how CityGML 3.0 can be used to provide semantic structures for point clouds (directly or stored in a separate LAS file). Methods and metrics to automatically assign points to corresponding Level of Detail (LoD)2 or LoD3 models are presented. Subsequently, dataset examples implementing these concepts are provided for download.


Author(s):  
J. Yan ◽  
S. Zlatanova ◽  
M. Aleksandrov ◽  
A. A. Diakite ◽  
C. Pettit

<p><strong>Abstract.</strong> 3D modelling of precincts and cities has significantly advanced in the last decades, as we move towards the concept of the Digital Twin. Many 3D city models have been created but a large portion of them neglect representing terrain and buildings accurately. Very often the surface is either considered planar or is not represented. On the other hand, many Digital Terrain Models (DTM) have been created as 2.5D triangular irregular networks (TIN) or grids for different applications such as water management, sign of view or shadow computation, tourism, land planning, telecommunication, military operations and communications. 3D city models need to represent both the 3D objects and terrain in one consistent model, but still many challenges remain. A critical issue when integrating 3D objects and terrain is the identification of the valid intersection between 2.5D terrain and 3D objects. Commonly, 3D objects may partially float over or sink into the terrain; the depth of the underground parts might not be known; or the accuracy of data sets might be different. This paper discusses some of these issues and presents an approach for a consistent 3D reconstruction of LOD1 models on the basis of 3D point clouds, DTM, and 2D footprints of buildings. Such models are largely used for urban planning, city analytics or environmental analysis. The proposed method can be easily extended for higher LODs or BIM models.</p>


Author(s):  
O. Wysocki ◽  
Y. Xu ◽  
U. Stilla

Abstract. Throughout the years, semantic 3D city models have been created to depict 3D spatial phenomenon. Recently, an increasing number of mobile laser scanning (MLS) units yield terrestrial point clouds at an unprecedented level. Both dataset types often depict the same 3D spatial phenomenon differently, thus their fusion should increase the quality of the captured 3D spatial phenomenon. Yet, each dataset has modality-dependent uncertainties that hinder their immediate fusion. Therefore, we present a method for fusing MLS point clouds with semantic 3D building models while considering uncertainty issues. Specifically, we show MLS point clouds coregistration with semantic 3D building models based on expert confidence in evaluated metadata quantified by confidence interval (CI). This step leads to the dynamic adjustment of the CI, which is used to delineate matching bounds for both datasets. Both coregistration and matching steps serve as priors for a Bayesian network (BayNet) that performs application-dependent identity estimation. The BayNet propagates uncertainties and beliefs throughout the process to estimate end probabilities for confirmed, unmodeled, and other city objects. We conducted promising preliminary experiments on urban MLS and CityGML datasets. Our strategy sets up a framework for the fusion of MLS point clouds and semantic 3D building models. This framework aids the challenging parallel usage of such datasets in applications such as façade refinement or change detection. To further support this process, we open-sourced our implementation.


Solar Energy ◽  
2017 ◽  
Vol 146 ◽  
pp. 264-275 ◽  
Author(s):  
Laura Romero Rodríguez ◽  
Eric Duminil ◽  
José Sánchez Ramos ◽  
Ursula Eicker

Sign in / Sign up

Export Citation Format

Share Document