scholarly journals INTEGRATION OF 3D OBJECTS AND TERRAIN FOR 3D MODELLING SUPPORTING THE DIGITAL TWIN

Author(s):  
J. Yan ◽  
S. Zlatanova ◽  
M. Aleksandrov ◽  
A. A. Diakite ◽  
C. Pettit

<p><strong>Abstract.</strong> 3D modelling of precincts and cities has significantly advanced in the last decades, as we move towards the concept of the Digital Twin. Many 3D city models have been created but a large portion of them neglect representing terrain and buildings accurately. Very often the surface is either considered planar or is not represented. On the other hand, many Digital Terrain Models (DTM) have been created as 2.5D triangular irregular networks (TIN) or grids for different applications such as water management, sign of view or shadow computation, tourism, land planning, telecommunication, military operations and communications. 3D city models need to represent both the 3D objects and terrain in one consistent model, but still many challenges remain. A critical issue when integrating 3D objects and terrain is the identification of the valid intersection between 2.5D terrain and 3D objects. Commonly, 3D objects may partially float over or sink into the terrain; the depth of the underground parts might not be known; or the accuracy of data sets might be different. This paper discusses some of these issues and presents an approach for a consistent 3D reconstruction of LOD1 models on the basis of 3D point clouds, DTM, and 2D footprints of buildings. Such models are largely used for urban planning, city analytics or environmental analysis. The proposed method can be easily extended for higher LODs or BIM models.</p>

2021 ◽  
Vol 13 (10) ◽  
pp. 1882
Author(s):  
Yijie Wu ◽  
Jianga Shang ◽  
Fan Xue

Coarse registration of 3D point clouds plays an indispensable role for parametric, semantically rich, and realistic digital twin buildings (DTBs) in the practice of GIScience, manufacturing, robotics, architecture, engineering, and construction. However, the existing methods have prominently been challenged by (i) the high cost of data collection for numerous existing buildings and (ii) the computational complexity from self-similar layout patterns. This paper studies the registration of two low-cost data sets, i.e., colorful 3D point clouds captured by smartphones and 2D CAD drawings, for resolving the first challenge. We propose a novel method named `Registration based on Architectural Reflection Detection’ (RegARD) for transforming the self-symmetries in the second challenge from a barrier of coarse registration to a facilitator. First, RegARD detects the innate architectural reflection symmetries to constrain the rotations and reduce degrees of freedom. Then, a nonlinear optimization formulation together with advanced optimization algorithms can overcome the second challenge. As a result, high-quality coarse registration and subsequent low-cost DTBs can be created with semantic components and realistic appearances. Experiments showed that the proposed method outperformed existing methods considerably in both effectiveness and efficiency, i.e., 49.88% less error and 73.13% less time, on average. The RegARD presented in this paper first contributes to coarse registration theories and exploitation of symmetries and textures in 3D point clouds and 2D CAD drawings. For practitioners in the industries, RegARD offers a new automatic solution to utilize ubiquitous smartphone sensors for massive low-cost DTBs.


Author(s):  
G. Bitelli ◽  
V. A. Girelli ◽  
A. Lambertini

3D city models are becoming increasingly popular and important, because they constitute the base for all the visualization, planning, management operations regarding the urban infrastructure. These data are however not available in the majority of cities: in this paper, the possibility to use geospatial data of various kinds with the aim to generate 3D models in urban environment is investigated.<br> In 3D modelling works, the starting data are frequently the 3D point clouds, which are nowadays possible to collect by different sensors mounted on different platforms: LiDAR, imagery from satellite, airborne or unmanned aerial vehicles, mobile mapping systems that integrate several sensors. The processing of the acquired data and consequently the obtainability of models able to provide geometric accuracy and a good visual impact is limited by time, costs and logistic constraints.<br> Nowadays more and more innovative hardware and software solutions can offer to the municipalities and the public authorities the possibility to use available geospatial data, acquired for diverse aims, for the generation of 3D models of buildings and cities, characterized by different level of detail.<br> In the paper two cases of study are presented, both regarding surveys carried out in Emilia Romagna region, Italy, where 2D or 2.5D numerical maps are available. The first one is about the use of oblique aerial images realized by the Municipality for a systematic documentation of the built environment, the second concerns the use of LiDAR data acquired for other purposes; in the two tests, these data were used in conjunction with large scale numerical maps to produce 3D city models.


Author(s):  
C. Beil ◽  
T. Kutzner ◽  
B. Schwab ◽  
B. Willenborg ◽  
A. Gawronski ◽  
...  

Abstract. A range of different and increasingly accessible acquisition methods, the possibility for frequent data updates of large areas, and a simple data structure are some of the reasons for the popularity of three-dimensional (3D) point cloud data. While there are multiple techniques for segmenting and classifying point clouds, capabilities of common data formats such as LAS for providing semantic information are mostly limited to assigning points to a certain category (classification). However, several fields of application, such as digital urban twins used for simulations and analyses, require more detailed semantic knowledge. This can be provided by semantic 3D city models containing hierarchically structured semantic and spatial information. Although semantic models are often reconstructed from point clouds, they are usually geometrically less accurate due to generalization processes. First, point cloud data structures / formats are discussed with respect to their semantic capabilities. Then, a new approach for integrating point clouds with semantic 3D city models is presented, consequently combining respective advantages of both data types. In addition to elaborate (and established) semantic concepts for several thematic areas, the new version 3.0 of the international Open Geospatial Consortium (OGC) standard CityGML also provides a PointCloud module. In this paper a scheme is shown, how CityGML 3.0 can be used to provide semantic structures for point clouds (directly or stored in a separate LAS file). Methods and metrics to automatically assign points to corresponding Level of Detail (LoD)2 or LoD3 models are presented. Subsequently, dataset examples implementing these concepts are provided for download.


Author(s):  
W. Nguatem ◽  
M. Drauschke ◽  
H. Mayer

In this paper, we present a fully automatic approach to localize the outlines of facade objects (windows and doors) in 3D point clouds of facades. We introduce an approach to search for the main facade wall and locate the facade objects within a probabilistic framework. Our search routine is based on Monte Carlo Simulation (MC-Simulation). Templates containing control points of curves are used to approximate the possible shapes of windows and doors. These are interpolated using parametric B-spline curves. These templates are scored in a sliding window style over the entire facade using a likelihood function in a probabilistic matching procedure. This produces many competing results for which a two layered model selection based on Bayes factor is applied. A major thrust in our work is the introduction of a 2D shape-space of similar shapes under affine transform in this architectural scene. This transforms the initial parametric B-splines curves representing the outlines of objects to curves of affine similarity in a strongly reduced dimensionality thus facilitating the generation of competing hypotheses within the search space. A further computational speedup is achieved through the clustering of the search space to disjoint regions, thus enabling a parallel implementation. We obtain state-of-the results on self-acquired data sets. The robustness of our algorithm is evaluated on 3D point clouds from image matching and LiDAR data of diverse quality.


Author(s):  
T. Guo ◽  
A. Capra ◽  
M. Troyer ◽  
A. Gruen ◽  
A. J. Brooks ◽  
...  

Recent advances in automation of photogrammetric 3D modelling software packages have stimulated interest in reconstructing highly accurate 3D object geometry in unconventional environments such as underwater utilizing simple and low-cost camera systems. The accuracy of underwater 3D modelling is affected by more parameters than in single media cases. This study is part of a larger project on 3D measurements of temporal change of coral cover in tropical waters. It compares the accuracies of 3D point clouds generated by using images acquired from a system camera mounted in an underwater housing and the popular GoPro cameras respectively. A precisely measured calibration frame was placed in the target scene in order to provide accurate control information and also quantify the errors of the modelling procedure. In addition, several objects (cinder blocks) with various shapes were arranged in the air and underwater and 3D point clouds were generated by automated image matching. These were further used to examine the relative accuracy of the point cloud generation by comparing the point clouds of the individual objects with the objects measured by the system camera in air (the best possible values). Given a working distance of about 1.5 m, the GoPro camera can achieve a relative accuracy of 1.3 mm in air and 2.0 mm in water. The system camera achieved an accuracy of 1.8 mm in water, which meets our requirements for coral measurement in this system.


Author(s):  
L. Díaz-Vilariño ◽  
P. Boguslawski ◽  
K. Khoshelham ◽  
H. Lorenzo ◽  
L. Mahdjoubi

In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. &lt;br&gt;&lt;br&gt; Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. &lt;br&gt;&lt;br&gt; In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.


Author(s):  
L. Díaz-Vilariño ◽  
P. Boguslawski ◽  
K. Khoshelham ◽  
H. Lorenzo ◽  
L. Mahdjoubi

In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. <br><br> Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. <br><br> In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.


Author(s):  
N. Tyagur ◽  
M. Hollaus

During the last ten years, mobile laser scanning (MLS) systems have become a very popular and efficient technology for capturing reality in 3D. A 3D laser scanner mounted on the top of a moving vehicle (e.g. car) allows the high precision capturing of the environment in a fast way. Mostly this technology is used in cities for capturing roads and buildings facades to create 3D city models. In our work, we used an MLS system in Moravian Karst, which is a protected nature reserve in the Eastern Part of the Czech Republic, with a steep rocky terrain covered by forests. For the 3D data collection, the Riegl VMX 450, mounted on a car, was used with integrated IMU/GNSS equipment, which provides low noise, rich and very dense 3D point clouds. <br><br> The aim of this work is to create a digital terrain model (DTM) from several MLS data sets acquired in the neighbourhood of a road. The total length of two covered areas is 3.9 and 6.1 km respectively, with an average width of 100 m. For the DTM generation, a fully automatic, robust, hierarchic approach was applied. The derivation of the DTM is based on combinations of hierarchical interpolation and robust filtering for different resolution levels. For the generation of the final DTMs, different interpolation algorithms are applied to the classified terrain points. The used parameters were determined by explorative analysis. All MLS data sets were processed with one parameter set. As a result, a high precise DTM was derived with high spatial resolution of 0.25 x 0.25 m. The quality of the DTMs was checked by geodetic measurements and visual comparison with raw point clouds. The high quality of the derived DTM can be used for analysing terrain changes and morphological structures. Finally, the derived DTM was compared with the DTM of the Czech Republic (DMR 4G) with a resolution of 5 x 5 m, which was created from airborne laser scanning data. The vertical accuracy of the derived DTMs is around 0.10 m.


Author(s):  
T. Wakita ◽  
J. Susaki

In this study, we propose a method to accurately extract vegetation from terrestrial three-dimensional (3D) point clouds for estimating landscape index in urban areas. Extraction of vegetation in urban areas is challenging because the light returned by vegetation does not show as clear patterns as man-made objects and because urban areas may have various objects to discriminate vegetation from. The proposed method takes a multi-scale voxel approach to effectively extract different types of vegetation in complex urban areas. With two different voxel sizes, a process is repeated that calculates the eigenvalues of the planar surface using a set of points, classifies voxels using the approximate curvature of the voxel of interest derived from the eigenvalues, and examines the connectivity of the valid voxels. We applied the proposed method to two data sets measured in a residential area in Kyoto, Japan. The validation results were acceptable, with F-measures of approximately 95% and 92%. It was also demonstrated that several types of vegetation were successfully extracted by the proposed method whereas the occluded vegetation were omitted. We conclude that the proposed method is suitable for extracting vegetation in urban areas from terrestrial light detection and ranging (LiDAR) data. In future, the proposed method will be applied to mobile LiDAR data and the performance of the method against lower density of point clouds will be examined.


Sign in / Sign up

Export Citation Format

Share Document