scholarly journals Distinguishing the Sources

Author(s):  
Donald V. Reames

AbstractOur discussion of history has covered many of the observations that have led to the ideas of acceleration by shock waves or by magnetic reconnection in gradual and impulsive solar energetic particle (SEP) events, respectively. We now present other compelling observations, including onset timing, SEP-shock correlations, injection time profiles, high-energy spectral knees, e/p ratios, and intensity dropouts caused by a compact source, that have helped clarify these acceleration mechanisms and sources. However, some of the newest evidence now comes from source-plasma temperatures. In this and the next two chapters, we will find that impulsive events come from solar active regions at ≈ 3 MK, controlling ionization states Q, hence A/Q, and, in most gradual events, shocks accelerate ambient coronal material from ≤1.6 MK. When SEPs are trapped on closed loops they supply the energy for flares. In addition to helping to define their own origin, SEPs also probe the structure of the interplanetary magnetic field.

Author(s):  
Donald V. Reames

AbstractThe structure of the Sun, with its energy generation and heating, creates convection and differential rotation of the outer solar plasma. This convection and rotation of the ionized plasma generates the solar magnetic field. This field and its variation spawn all of the solar activity: solar active regions, flares, jets, and coronal mass ejections (CMEs). Solar activity provides the origin and environment for both the impulsive and gradual solar energetic particle (SEP) events. This chapter introduces the background environment and basic properties of SEP events, time durations, abundances, and solar cycle variations.


2021 ◽  
Author(s):  
Zigong Xu ◽  
Johan L. Freiherr von Forstner ◽  
Patrick Kühl ◽  
Nils Janitzek ◽  
César Martín ◽  
...  

<p>As part of the Energetic Particle Detector (EPD) suite onboard Solar Orbiter, the High Energy Telescope has been launched on its mission to the Sun on February 9, 2020, and has been measuring energetic particles since it was first switched on about two weeks after launch. Using their double-ended telescopes, the two HET units provide measurements of ions above 7 MeV/nuc and electrons above 300 keV in four viewing directions. HET observed several Solar Energetic Particle (SEPs) events during the cruise phase, including the first one with a broad energy coverage (up to ~100MeV) on 29 Nov 2020. Being the first larger SEP event in a phase of rising solar activity, these measurements have already attracted extensive attention of the community. Apart from the SEPs, the HET can be used to observe the Galactic cosmic radiation (GCR) and its temporal variation. The GCR measurements can be also utilized for the validation of the energy response of HET. The overall spectra observed by HET are as expected, except for calibration issues in some specific energy bins that we are still investigating. Finally, the HET also observed several Forbush Decreases (FD), i.e. cosmic ray decreases caused by CMEs and their embedded magnetic field. Here, the capabilities and data products of HET, as well as first measurements of SEPs, GCR and FDs are presented. </p>


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki V. Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

AbstractIn gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here, we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading edge of the interplanetary CME (or ICME) that was driving the shock. While < 10 MeV protons were detected already at the shock front, the higher-energy (> 30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.


2021 ◽  
Author(s):  
Mitsuo Oka ◽  
Takahiro Obara ◽  
Nariaki Nitta ◽  
Seiji Yashiro ◽  
Daikou Shiota ◽  
...  

&lt;p&gt;In gradual Solar Energetic Particle (SEP) events, shock waves driven by coronal mass ejections (CMEs) play a major role in accelerating particles, and the energetic particle flux enhances substantially when the shock front passes by the observer. Such enhancements are historically referred to as Energetic Storm Particle (ESP) events, but it remains unclear why ESP time profiles vary significantly from event to event. In some cases, energetic protons are not even clearly associated with shocks. Here we report an unusual, short-duration proton event detected on 5 June 2011 in the compressed sheath region bounded by an interplanetary shock and the leading-edge of the interplanetary CME (or ICME) that was driving the shock. While &lt;10 MeV protons were detected already at the shock front, the higher-energy (&gt;30 MeV) protons were detected about four hours after the shock arrival, apparently correlated with a turbulent magnetic cavity embedded in the ICME sheath region.&lt;/p&gt;


2017 ◽  
Vol 13 (S335) ◽  
pp. 324-327
Author(s):  
Bill Swalwell ◽  
Silvia Dalla ◽  
Robert Walsh

AbstractBecause of the significant dangers they pose, accurate forecasting of Solar Energetic Particle (SEP) events is vital. Whilst it has long been known that SEP-production is associated with high-energy solar events, forecasting algorithms based upon the observation of these types of solar event suffer from high false alarm rates. Here we analyse the parameters of 4 very high energy solar events which were false alarms, with a view to reaching an understanding as to why SEPs were not detected at Earth. We find that in each case at least two factors were present which have been shown to be detrimental to SEP production.


2003 ◽  
Vol 21 (6) ◽  
pp. 1249-1256 ◽  
Author(s):  
O. E. Malandraki ◽  
E. T. Sarris ◽  
G. Tsiropoula

Abstract. Solar energetic particle fluxes (Ee > 38 keV) observed by the ULYSSES/HI-SCALE experiment are utilized as diagnostic tracers of the large-scale structure and topology of the Interplanetary Magnetic Field (IMF) embedded within two well-identified Interplanetary Coronal Mass Ejections (ICMEs) detected at 56° and 62° south heliolatitudes by ULYSSES during the solar maximum southern high-latitude pass. On the basis of the energetic solar particle observations it is concluded that: (A) the high-latitude ICME magnetic structure observed in May 2000 causes a depression in the solar energetic electron intensities which can be accounted for by either a detached or an attached magnetic field topology for the ICME; (B) during the traversal of the out-of-ecliptic ICME event observed in July 2000 energetic electrons injected at the Sun are channeled by the ICME and propagate freely along the ICME magnetic field lines to 62° S heliolatitude.Key words. Interplanetary physics (energetic particles; interplanetary magnetic fields)


Sign in / Sign up

Export Citation Format

Share Document