One-Dimensional Fourier Series

Author(s):  
Ferenc Weisz
Author(s):  
Mahdi Kordi ◽  
Seyed Mohammad Reza Vaziri ◽  
Fahimeh Armin ◽  
Mojtaba Joodaki

1999 ◽  
Vol 121 (3) ◽  
pp. 708-711 ◽  
Author(s):  
V. Petrushevsky ◽  
S. Cohen

A one-dimensional, nonlinear inverse heat conduction problem with surface ablation is considered. In-depth temperature measurements are used to restore the heat flux and the surface recession history. The presented method elaborates a whole domain, parameter estimation approach with the heat flux approximated by Fourier series. Two versions of the method are proposed: with a constant order and with a variable order of the Fourier series. The surface recession is found by a direct heat transfer solution under the estimated heat flux.


2012 ◽  
Vol 34 (2) ◽  
Author(s):  
Salvatore De Vincenzo

The problems of a free classical particle inside a one-dimensional box: (i) with impenetrable walls and (ii) with penetrable walls, were considered. For each problem, the classical amplitude and mechanical frequency of the T -th harmonic of the motion of the particle were identified from the Fourier series of the position function. After using the Bohr-Sommerfeld-Wilson quantization rule, the respective quantized amplitudes and frequencies (i.e., as a function of the quantum label n ) were obtained. Finally, the classical-quantum results were compared to those obtained from modern quantum mechanics, and a clear correspondence was observed in the limit of n » τ.


Author(s):  
Elena Prestini

AbstractIt is an open problem to establish whether or not the partial sums operator SNN2f(x, y) of the Fourier series of f ∈ Lp, 1 < p < 2, converges to the function almost everywhere as N → ∞. The purpose of this paper is to identify the operator that, in this problem of a.e. convergence of Fourier series, plays the central role that the maximal Hilbert transform plays in the one-dimensional case. This operator appears to be a singular integral with variable coefficients which is a variant of the maximal double Hilbert transform.


2010 ◽  
Vol 24 (3) ◽  
pp. 835-840 ◽  
Author(s):  
José Roberto de França Arruda

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
M. Jabbari ◽  
M. Meshkini ◽  
M. R. Eslami

The general solution of steady-state on one-dimensional Axisymmetric mechanical and thermal stresses for a hollow thick made of cylinder Functionally Graded porous material is developed. Temperature, as functions of the radial direction with general thermal and mechanical boundary-conditions on the inside and outside surfaces. A standard method is used to solve a nonhomogenous system of partial differential Navier equations with nonconstant coefficients, using complex Fourier series, rather power functions method and solve the heat conduction. The material properties, except poisson's ratio, are assumed to depend on the variable , and they are expressed as power functions of .


2021 ◽  
Vol 104 (4) ◽  
pp. 49-55
Author(s):  
S. Bitimkhan ◽  

In the theory of one-dimensional trigonometric series, the Hardy-Littlewood theorem on Fourier series with monotone Fourier coefficients is of great importance. Multidimensional versions of this theorem have been extensively studied for the Lebesgue space. Significant differences of the multidimensional variants in comparison with the one-dimensional case are revealed and the strengthening of this theorem is obtained. The Hardy-Littlewood theorem is also generalized for various function spaces and various types of monotonicity of the series coefficients. Some of these generalizations can be seen in works of M.F. Timan, M.I. Dyachenko, E.D. Nursultanov, S. Tikhonov. In this paper, a generalization of the Hardy-Littlewood theorem for double Fourier series of a function in the space L_qϕ(L_q)(0,2π]^2 is obtained.


Sign in / Sign up

Export Citation Format

Share Document