GMM Based Simultaneous Reconstruction and Segmentation in X-Ray CT Application

Author(s):  
Shi Yan ◽  
Yiqiu Dong
2016 ◽  
Vol 49 (2) ◽  
pp. 544-555 ◽  
Author(s):  
Nicola Viganò ◽  
Laura Nervo ◽  
Lorenzo Valzania ◽  
Gaurav Singh ◽  
Michael Preuss ◽  
...  

Three-dimensional X-ray orientation microscopy based on X-ray full-field imaging techniques such as diffraction contrast tomography is a challenging task when it comes to materials displaying non-negligible intragranular orientation spread and/or intricate grain microstructures as a result of plastic deformation and deformation twinning. As shown in this article, the optimization of the experimental conditions and a number of modifications of the data analysis routines enable detection and three-dimensional reconstruction of twin lamellae down to micrometre thickness, as well as more accurate three-dimensional reconstruction of grains displaying intragranular orientation spreads of up to a few degrees. The reconstruction of spatially resolved orientation maps becomes possible through the use of a recently introduced six-dimensional reconstruction framework, which has been further extended in order to enable simultaneous reconstruction of parent and twin orientations and to account for the finite impulse response of the X-ray imaging detector. The simultaneous reconstruction of disjoint orientation domains requires appropriate scaling of the scattering intensities based on structure and Lorentz factors and yields three-dimensional reconstructions with comparable density values for all the grains. This in turn enables the use of a global intensity-guided assembly procedure and avoids problems related to the single-grain thresholding procedure used previously. Last but not least, carrying out a systematic search over the list of known twin variants (forward modelling) for each of the indexed parent grains, it is possible to identify additional twins which have been left undetected at the previous stage of grain indexing based on diffraction spot peak positions. The enhanced procedure has been tested on a 1% deformed specimen made from a Ti–4% Al alloy and the result has been cross-validated against a two-dimensional electron backscatter diffraction orientation map acquired on one of the lateral sample surfaces.


2019 ◽  
Vol 14 (11) ◽  
pp. 1891-1899 ◽  
Author(s):  
Katharina Breininger ◽  
Moritz Hanika ◽  
Mareike Weule ◽  
Markus Kowarschik ◽  
Marcus Pfister ◽  
...  

1994 ◽  
Vol 144 ◽  
pp. 275-277
Author(s):  
M. Karlický ◽  
J. C. Hénoux

AbstractUsing a new ID hybrid model of the electron bombardment in flare loops, we study not only the evolution of densities, plasma velocities and temperatures in the loop, but also the temporal and spatial evolution of hard X-ray emission. In the present paper a continuous bombardment by electrons isotropically accelerated at the top of flare loop with a power-law injection distribution function is considered. The computations include the effects of the return-current that reduces significantly the depth of the chromospheric layer which is evaporated. The present modelling is made with superthermal electron parameters corresponding to the classical resistivity regime for an input energy flux of superthermal electrons of 109erg cm−2s−1. It was found that due to the electron bombardment the two chromospheric evaporation waves are generated at both feet of the loop and they propagate up to the top, where they collide and cause temporary density and hard X-ray enhancements.


1994 ◽  
Vol 144 ◽  
pp. 1-9
Author(s):  
A. H. Gabriel

The development of the physics of the solar atmosphere during the last 50 years has been greatly influenced by the increasing capability of observations made from space. Access to images and spectra of the hotter plasma in the UV, XUV and X-ray regions provided a major advance over the few coronal forbidden lines seen in the visible and enabled the cooler chromospheric and photospheric plasma to be seen in its proper perspective, as part of a total system. In this way space observations have stimulated new and important advances, not only in space but also in ground-based observations and theoretical modelling, so that today we find a well-balanced harmony between the three techniques.


1994 ◽  
Vol 144 ◽  
pp. 82
Author(s):  
E. Hildner

AbstractOver the last twenty years, orbiting coronagraphs have vastly increased the amount of observational material for the whitelight corona. Spanning almost two solar cycles, and augmented by ground-based K-coronameter, emission-line, and eclipse observations, these data allow us to assess,inter alia: the typical and atypical behavior of the corona; how the corona evolves on time scales from minutes to a decade; and (in some respects) the relation between photospheric, coronal, and interplanetary features. This talk will review recent results on these three topics. A remark or two will attempt to relate the whitelight corona between 1.5 and 6 R⊙to the corona seen at lower altitudes in soft X-rays (e.g., with Yohkoh). The whitelight emission depends only on integrated electron density independent of temperature, whereas the soft X-ray emission depends upon the integral of electron density squared times a temperature function. The properties of coronal mass ejections (CMEs) will be reviewed briefly and their relationships to other solar and interplanetary phenomena will be noted.


1988 ◽  
Vol 102 ◽  
pp. 47-50
Author(s):  
K. Masai ◽  
S. Hayakawa ◽  
F. Nagase

AbstractEmission mechanisms of the iron Kα-lines in X-ray binaries are discussed in relation with the characteristic temperature Txof continuum radiation thereof. The 6.7 keV line is ascribed to radiative recombination followed by cascades in a corona of ∼ 100 eV formed above the accretion disk. This mechanism is attained for Tx≲ 10 keV as observed for low mass X-ray binaries. The 6.4 keV line observed for binary X-ray pulsars with Tx> 10 keV is likely due to fluorescence outside the He II ionization front.


1988 ◽  
Vol 102 ◽  
pp. 357-360
Author(s):  
J.C. Gauthier ◽  
J.P. Geindre ◽  
P. Monier ◽  
C. Chenais-Popovics ◽  
N. Tragin ◽  
...  

AbstractIn order to achieve a nickel-like X ray laser scheme we need a tool to determine the parameters which characterise the high-Z plasma. The aim of this work is to study gold laser plasmas and to compare experimental results to a collisional-radiative model which describes nickel-like ions. The electronic temperature and density are measured by the emission of an aluminium tracer. They are compared to the predictions of the nickel-like model for pure gold. The results show that the density and temperature can be estimated in a pure gold plasma.


1988 ◽  
Vol 102 ◽  
pp. 339-342
Author(s):  
J.M. Laming ◽  
J.D. Silver ◽  
R. Barnsley ◽  
J. Dunn ◽  
K.D. Evans ◽  
...  

AbstractNew observations of x-ray spectra from foil-excited heavy ion beams are reported. By observing the target in a direction along the beam axis, an improvement in spectral resolution, δλ/λ, by about a factor of two is achieved, due to the reduced Doppler broadening in this geometry.


1988 ◽  
Vol 102 ◽  
pp. 259-261
Author(s):  
W.A. Brown ◽  
M.E. Bruner ◽  
L.W. Acton
Keyword(s):  

AbstractThe soft x-ray spectra recorded in two sounding rocket flights in 1982 and 1985 are compared with with predicted spectra. The poster presents the processed densitometer trace of the full spectrum together with the new spectrum from the 1985 experiment. This note compares the intensities of the lines with predictions.


Sign in / Sign up

Export Citation Format

Share Document