collisional radiative model
Recently Published Documents


TOTAL DOCUMENTS

222
(FIVE YEARS 39)

H-INDEX

30
(FIVE YEARS 3)

Author(s):  
Daniel Wendler ◽  
Ralph Dux ◽  
Rainer Fischer ◽  
Michael Griener ◽  
Elisabeth Wolfrum ◽  
...  

Abstract The thermal helium beam diagnostic at ASDEX Upgrade is used to infer the electron density ne and temperature Te in the scrape-off layer and the pedestal region from the emission of visible lines of the locally injected helium. The link between ne and Te and the emission is provided by a collisional radiative model, which delivers the evolution of the populations of the relevant excited states as the He atoms travel through the plasma. A computationally efficient method with just three effective states is shown to provide a good approximation of the population dynamics. It removes an artificial rise of Te at the plasma edge when using a simple static model. Furthermore, the re-absorption of the vacuum ultra-violet resonance lines has been introduced as additional excitation mechanism being mainly important in the region close to the injection point. This extra excitation leads to a much better fit of the measured line ratios in this region for larger puff rates.


Atoms ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 100
Author(s):  
Hyun-Kyung Chung ◽  
Mi-Young Song ◽  
Ji-Won Kwon ◽  
Myeong-Geon Lee ◽  
Jihoon Park ◽  
...  

Optical emission spectroscopy has been widely used in low-temperature argon plasma diagnostics. A coronal model is usually used to analyze the measured line ratios for diagnostics with a single temperature and density. However, many plasma processing conditions deviate from single temperature and density, optically thin conditions, or even coronal plasma conditions due to cascades from high-lying states. In this paper, we present a collisional-radiative model to investigate the validity of coronal approximations over a range of plasma conditions of Te = 1–4 eV and Ne = 108–1013 cm−3. The commonly used line ratios are found to change from a coronal limit where they are independent of Ne to a collisional-radiative regime where they are not. The effects of multiple-temperature plasma, radiation trapping, wall neutralization, and quenching on the line ratios are investigated to identify the plasma conditions under which these effects are significant. This study demonstrates the importance of the completeness of atomic datasets in applying a collisional-radiative model to low-temperature plasma diagnostics.


Author(s):  
Nirbhav Singh Chopra ◽  
Yevgeny Raitses ◽  
Shurik Yatom ◽  
Jorge M Muñoz Burgos

Abstract . In the atmospheric pressure anodic carbon arc, ablation of the anode serves as a feedstock of carbon for production of nanomaterials. It is known that the ablation of the graphite anode in this arc can have two distinctive modes with low and high ablation rates. The transition between these modes is governed by the power deposition at the arc attachment to the anode and depends on the gap between the anode and the cathode electrodes. Probe measurements combined with optical emission spectroscopy (OES) are used to analyze the voltage drop between the arc electrodes. These measurements corroborated previous predictions of a positive anode sheath (i.e. electron attracting sheath) in this arc, which appears in both low and high ablation modes. However, the positive anode sheath was determined to be ~3-8 V, significantly larger than ~0.5 V predicted by previous models. Thus, there are apparently other physical mechanisms not considered by these models that force the anode sheath to be electron attracting in both ablation regimes. Another key result is a relatively low electron temperature (~ 0.6 eV) obtained from OES using a collisional radiative model. This result partially explains a higher arc voltage (~ 20 V) required to sustain the arc current of 50-70 A than predicted by existing simulations of this discharge.


Author(s):  
Enrico Majorana ◽  
Nabil Souhair ◽  
Fabrizio Ponti ◽  
Mirko Magarotto

AbstractThe present work is part of a wider project aimed at improving the description of the plasma dynamics during the production phase of a Helicon Plasma Thruster. In particular, the work was focused on the development of a chemical model for Argon- and Xenon-based plasma. The developed model consists of a collisional radiative model suitable to describe the dynamics of the 1s and 2p excited levels. The model is meant to be complementary to 3D-VIRTUS, a numerical tool which enforces a fluid description of plasma, developed by the University of Padova to analyse helicon discharges. Once identified, the significant reactions for both propellants, the reaction rate coefficients, have been integrated exploiting cross sections from literature and assuming a Maxwellian velocity distribution function for all the species. These coefficients have been validated against experimental measurements of an Argon Inductively Coupled Plasma and compared with a well-established code. For Argon, the selected reactions have been reduced through a proposed lumping methodology. In this way, it was possible to reduce the number of equations of the system to solve, and implement them into 3D-VIRTUS. A validation against an experimental case taken from literature was performed, showing good agreement of the results. Regarding the Xenon model, only a verification has been performed against the results of another collisional-radiative model in literature. Finally, a predictive analysis of the propulsive performances of a Helicon Plasma Thruster for both Argon and Xenon is presented.


AIP Advances ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 075226
Author(s):  
H. Horita ◽  
D. Kuwahara ◽  
H. Akatsuka ◽  
S. Shinohara

Sign in / Sign up

Export Citation Format

Share Document