scholarly journals Computational Inference of DNA Folding Principles: From Data Management to Machine Learning

Author(s):  
Luca Nanni

AbstractDNA is the molecular basis of life and would total about three meters if linearly untangled. To fit in the cell nucleus at the micrometer scale, DNA has, therefore, to fold itself into several layers of hierarchical structures, which are thought to be associated with functional compartmentalization of genomic features like genes and their regulatory elements. For this reason, understanding the mechanisms of genome folding is a major biological research problem. Studying chromatin conformation requires high computational resources and complex data analyses pipelines. In this chapter, we first present the PyGMQL software for interactive and scalable data exploration for genomic data. PyGMQL allows the user to inspect genomic datasets and design complex analysis pipelines. The software presents itself as a easy-to-use Python library and interacts seamlessly with other data analysis packages. We then use the software for the study of chromatin conformation data. We focus on the epigenetic determinants of Topologically Associating Domains (TADs), which are region of high self chromatin interaction. The results of this study highlight the existence of a “grammar of genome folding” which dictates the formation of TADs and boundaries, which is based on the CTCF insulator protein. Finally we focus on the relationship between chromatin conformation and gene expression, designing a graph representation learning model for the prediction of gene co-expression from gene topological features obtained from chromatin conformation data. We demonstrate a correlation between chromatin topology and co-expression, shedding a new light on this debated topic and providing a novel computational framework for the study of co-expression networks.

2021 ◽  
Vol 13 (3) ◽  
pp. 526
Author(s):  
Shengliang Pu ◽  
Yuanfeng Wu ◽  
Xu Sun ◽  
Xiaotong Sun

The nascent graph representation learning has shown superiority for resolving graph data. Compared to conventional convolutional neural networks, graph-based deep learning has the advantages of illustrating class boundaries and modeling feature relationships. Faced with hyperspectral image (HSI) classification, the priority problem might be how to convert hyperspectral data into irregular domains from regular grids. In this regard, we present a novel method that performs the localized graph convolutional filtering on HSIs based on spectral graph theory. First, we conducted principal component analysis (PCA) preprocessing to create localized hyperspectral data cubes with unsupervised feature reduction. These feature cubes combined with localized adjacent matrices were fed into the popular graph convolution network in a standard supervised learning paradigm. Finally, we succeeded in analyzing diversified land covers by considering local graph structure with graph convolutional filtering. Experiments on real hyperspectral datasets demonstrated that the presented method offers promising classification performance compared with other popular competitors.


Author(s):  
Aneesh Balakrishnan ◽  
Dan Alexandrescu ◽  
Maksim Jenihhin ◽  
Thomas Lange ◽  
Maximilien Glorieux

Cancers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 2111
Author(s):  
Bo-Wei Zhao ◽  
Zhu-Hong You ◽  
Lun Hu ◽  
Zhen-Hao Guo ◽  
Lei Wang ◽  
...  

Identification of drug-target interactions (DTIs) is a significant step in the drug discovery or repositioning process. Compared with the time-consuming and labor-intensive in vivo experimental methods, the computational models can provide high-quality DTI candidates in an instant. In this study, we propose a novel method called LGDTI to predict DTIs based on large-scale graph representation learning. LGDTI can capture the local and global structural information of the graph. Specifically, the first-order neighbor information of nodes can be aggregated by the graph convolutional network (GCN); on the other hand, the high-order neighbor information of nodes can be learned by the graph embedding method called DeepWalk. Finally, the two kinds of feature are fed into the random forest classifier to train and predict potential DTIs. The results show that our method obtained area under the receiver operating characteristic curve (AUROC) of 0.9455 and area under the precision-recall curve (AUPR) of 0.9491 under 5-fold cross-validation. Moreover, we compare the presented method with some existing state-of-the-art methods. These results imply that LGDTI can efficiently and robustly capture undiscovered DTIs. Moreover, the proposed model is expected to bring new inspiration and provide novel perspectives to relevant researchers.


Author(s):  
Leon Hetzel ◽  
David S. Fischer ◽  
Stephan Günnemann ◽  
Fabian J. Theis

2021 ◽  
Vol 11 (10) ◽  
pp. 4497
Author(s):  
Dongming Chen ◽  
Mingshuo Nie ◽  
Jie Wang ◽  
Yun Kong ◽  
Dongqi Wang ◽  
...  

Aiming at analyzing the temporal structures in evolutionary networks, we propose a community detection algorithm based on graph representation learning. The proposed algorithm employs a Laplacian matrix to obtain the node relationship information of the directly connected edges of the network structure at the previous time slice, the deep sparse autoencoder learns to represent the network structure under the current time slice, and the K-means clustering algorithm is used to partition the low-dimensional feature matrix of the network structure under the current time slice into communities. Experiments on three real datasets show that the proposed algorithm outperformed the baselines regarding effectiveness and feasibility.


Author(s):  
Yizhu Jiao ◽  
Yun Xiong ◽  
Jiawei Zhang ◽  
Yao Zhang ◽  
Tianqi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document