Interaction between fold and Hopf curves leads to new bifurcation phenomena

Author(s):  
Bart De Dier ◽  
Dirk Roose ◽  
Paul Van Rompay
Author(s):  
S.A. Livshits ◽  
N.A. Yudina ◽  
T.U. Dunaeva ◽  
O.V. Novikova ◽  
M.S. Prudchenko

2021 ◽  
Vol 42 (5) ◽  
pp. 641-648
Author(s):  
Shichao Ma ◽  
Xin Ning ◽  
Liang Wang ◽  
Wantao Jia ◽  
Wei Xu

AbstractIt is well-known that practical vibro-impact systems are often influenced by random perturbations and external excitation forces, making it challenging to carry out the research of this category of complex systems with non-smooth characteristics. To address this problem, by adequately utilizing the stochastic response analysis approach and performing the stochastic response for the considered non-smooth system with the external excitation force and white noise excitation, a modified conducting process has proposed. Taking the multiple nonlinear parameters, the non-smooth parameters, and the external excitation frequency into consideration, the steady-state stochastic P-bifurcation phenomena of an elastic impact oscillator are discussed. It can be found that the system parameters can make the system stability topology change. The effectiveness of the proposed method is verified and demonstrated by the Monte Carlo (MC) simulation. Consequently, the conclusions show that the process can be applied to stochastic non-autonomous and non-smooth systems.


2021 ◽  
Vol 11 (5) ◽  
pp. 2106
Author(s):  
Abdelali El Aroudi ◽  
Mohamed Debbat ◽  
Mohammed Al-Numay ◽  
Abdelmajid Abouloiafa

Numerical simulations reveal that a single-stage differential boost AC module supplied from a PV module under an Maximum Power Point Tracking (MPPT) control at the input DC port and with current synchronization at the AC grid port might exhibit bifurcation phenomena under some weather conditions leading to subharmonic oscillation at the fast-switching scale. This paper will use discrete-time approach to characterize such behavior and to identify the onset of fast-scale instability. Slope compensation is used in the inner current loop to improve the stability of the system. The compensation slope values needed to guarantee stability for the full range of operating duty cycle and leading to an optimal deadbeat response are determined. The validity of the followed procedures is finally validated by a numerical simulations performed on a detailed circuit-level switched model of the AC module.


AIAA Journal ◽  
1967 ◽  
Vol 5 (11) ◽  
pp. 2034-2040 ◽  
Author(s):  
DAVID BUSHNELL

2013 ◽  
Vol 2013 ◽  
pp. 1-14
Author(s):  
Yun Wu ◽  
Zhengrong Liu

We study the bifurcation phenomena of nonlinear waves described by a generalized Zakharov-Kuznetsov equationut+au2+bu4ux+γuxxx+δuxyy=0. We reveal four kinds of interesting bifurcation phenomena. The first kind is that the low-kink waves can be bifurcated from the symmetric solitary waves, the 1-blow-up waves, the tall-kink waves, and the antisymmetric solitary waves. The second kind is that the 1-blow-up waves can be bifurcated from the periodic-blow-up waves, the symmetric solitary waves, and the 2-blow-up waves. The third kind is that the periodic-blow-up waves can be bifurcated from the symmetric periodic waves. The fourth kind is that the tall-kink waves can be bifurcated from the symmetric periodic waves.


2021 ◽  
Vol 11 (4) ◽  
pp. 1395
Author(s):  
Abdelali El Aroudi ◽  
Natalia Cañas-Estrada ◽  
Mohamed Debbat ◽  
Mohamed Al-Numay

This paper presents a study of the nonlinear dynamic behavior a flying capacitor four-level three-cell DC-DC buck converter. Its stability analysis is performed and its stability boundaries is determined in the multi-dimensional paramertic space. First, the switched model of the converter is presented. Then, a discrete-time controller for the converter is proposed. The controller is is responsible for both balancing the flying capacitor voltages from one hand and for output current regulation. Simulation results from the switched model of the converter under the proposed controller are presented. The results show that the system may undergo bifurcation phenomena and period doubling route to chaos when some system parameters are varied. One-dimensional bifurcation diagrams are computed and used to explore the possible dynamical behavior of the system. By using Floquet theory and Filippov method to derive the monodromy matrix, the bifurcation behavior observed in the converter is accurately predicted. Based on justified and realistic approximations of the system state variables waveforms, simple and accurate expressions for these steady-state values and the monodromy matrix are derived and validated. The simple expression of the steady-state operation and the monodromy matrix allow to analytically predict the onset of instability in the system and the stability region in the parametric space is determined. Numerical simulations from the exact switched model validate the theoretical predictions.


2007 ◽  
Vol 17 (03) ◽  
pp. 837-850 ◽  
Author(s):  
SHIGEKI TSUJI ◽  
TETSUSHI UETA ◽  
HIROSHI KAWAKAMI

The Bonhöffer–van der Pol (BVP) oscillator is a simple circuit implementation describing neuronal dynamics. Lately the diffusive coupling structure of neurons attracts much attention since the existence of the gap-junctional coupling has been confirmed in the brain. Such coupling is easily realized by linear resistors for the circuit implementation, however, there are not enough investigations about diffusively coupled BVP oscillators, even a couple of BVP oscillators. We have considered several types of coupling structure between two BVP oscillators, and discussed their dynamical behavior in preceding works. In this paper, we treat a simple structure called current coupling and study their dynamical properties by the bifurcation theory. We investigate various bifurcation phenomena by computing some bifurcation diagrams in two cases, symmetrically and asymmetrically coupled systems. In symmetrically coupled systems, although all internal elements of two oscillators are the same, we obtain in-phase, anti-phase solution and some chaotic attractors. Moreover, we show that two quasi-periodic solutions disappear simultaneously by the homoclinic bifurcation on the Poincaré map, and that a large quasi-periodic solution is generated by the coalescence of these quasi-periodic solutions, but it disappears by the heteroclinic bifurcation on the Poincaré map. In the other case, we confirm the existence a conspicuous chaotic attractor in the laboratory experiments.


2002 ◽  
Vol 125 (1) ◽  
pp. 40-45 ◽  
Author(s):  
K. P. Vanoverberghe ◽  
E. V. Van den Bulck ◽  
M. J. Tummers ◽  
W. A. Hu¨bner

Five different flame states are identified in a compact combustion chamber that is fired by a 30 kW swirl-stabilized partially premixed natural gas burner working at atmospheric pressure. These flame states include a nozzle-attached tulip shaped flame, a nonattached torroidal-ring shaped flame (SSF) suitable for very low NOx emission in a gas turbine combustor and a Coanda flame (CSF) that clings to the bottom wall of the combustion chamber. Flame state transition is generated by changing the swirl number and by premixing the combustion air with 70% of the natural gas flow. The flame state transition pathways reveal strong hysteresis and bifurcation phenomena. The paper also presents major species concentrations, temperature and velocity profiles of the lifted flame state and the Coanda flame and discusses the mechanisms of flame transition and stabilization.


1995 ◽  
Vol 5 (5) ◽  
pp. 761-782 ◽  
Author(s):  
Andrew Kricker ◽  
Girish Joshi

Sign in / Sign up

Export Citation Format

Share Document