Numerical Modeling of the Submarine Debris Flows Run-Out Using SPH

Author(s):  
Hualin Cheng ◽  
Yu Huang ◽  
Qiang Xu
Author(s):  
Z Dai ◽  
Y Huang ◽  
H Cheng ◽  
Q Xu ◽  
K Sawada ◽  
...  

2017 ◽  
Vol 140 ◽  
pp. 03002 ◽  
Author(s):  
Francesco Federico ◽  
Chiara Cesali

2004 ◽  
Author(s):  
Carlos Pirmez ◽  
Jeffrey Marr ◽  
Craig Shipp ◽  
Frans Kopp

2012 ◽  
Vol 12 (10) ◽  
pp. 3075-3090 ◽  
Author(s):  
H. Y. Hussin ◽  
B. Quan Luna ◽  
C. J. van Westen ◽  
M. Christen ◽  
J.-P. Malet ◽  
...  

Abstract. The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10–50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.


2021 ◽  
Vol 27 (1) ◽  
pp. 43-56
Author(s):  
Luke A. McGuire ◽  
Francis K. Rengers ◽  
Nina Oakley ◽  
Jason W. Kean ◽  
Dennis M. Staley ◽  
...  

ABSTRACT The extreme heat from wildfire alters soil properties and incinerates vegetation, leading to changes in infiltration capacity, ground cover, soil erodibility, and rainfall interception. These changes promote elevated rates of runoff and sediment transport that increase the likelihood of runoff-generated debris flows. Debris flows are most common in the year immediately following wildfire, but temporal changes in the likelihood and magnitude of debris flows following wildfire are not well constrained. In this study, we combine measurements of soil-hydraulic properties with vegetation survey data and numerical modeling to understand how debris-flow threats are likely to change in steep, burned watersheds during the first 3 years of recovery. We focus on documenting recovery following the 2016 Fish Fire in the San Gabriel Mountains, California, and demonstrate how a numerical model can be used to predict temporal changes in debris-flow properties and initiation thresholds. Numerical modeling suggests that the 15-minute intensity-duration (ID) threshold for debris flows in post-fire year 1 can vary from 15 to 30 mm/hr, depending on how rainfall is temporally distributed within a storm. Simulations further demonstrate that expected debris-flow volumes would be reduced by more than a factor of three following 1 year of recovery and that the 15-minute rainfall ID threshold would increase from 15 to 30 mm/hr to greater than 60 mm/hr by post-fire year 3. These results provide constraints on debris-flow thresholds within the San Gabriel Mountains and highlight the importance of considering local rainfall characteristics when using numerical models to assess debris-flow and flood potential.


Author(s):  
M. Coco ◽  
E. Marchetti ◽  
O. Morandi

AbstractDebris flows constitute a severe natural hazard in Alpine regions. Studies are performed to understand the event predictability and to identify early warning systems and procedures. These are based both on sensors deployed along the channels or on the amplitude of seismic and infrasound waves radiated by the flow and recorded far away. Despite being very promising, infrasound cannot be used to infer the source characteristics due to the lack of a physical model of the infrasound energy radiated by debris flows. Here the simulation of water flow along a simple channel is presented, experiencing the fall from a dam, performed within the open source simulation code OpenFOAM. The pressure perturbation within the atmosphere produced by the flow is extracted and the infrasound signature of the events as a function of the flow characteristics is defined. Numerical results suggest that infrasound is radiated immediately downstream of the dam with amplitude and period that scale with dam height and water level. Modeled infrasound waveform is interpreted as being produced mostly by waves at the water free surface developing downstream of the dam. Despite the effect of sediments is not considered in this first study and will be implemented in future investigations, numerical results obtained with this simple model are in general agreement with experimental results obtained from array analysis of infrasound data recorded at Illgraben, Switzerland. Results highlight how numerical modeling can provide critical information to define a source mechanism of infrasound energy radiation by debris-flow, that is required also to improve early warning systems.


Landslides ◽  
2020 ◽  
Vol 17 (8) ◽  
pp. 1863-1880 ◽  
Author(s):  
Dingzhu Liu ◽  
Yifei Cui ◽  
Jian Guo ◽  
Zhilin Yu ◽  
Dave Chan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document