energy radiation
Recently Published Documents


TOTAL DOCUMENTS

688
(FIVE YEARS 70)

H-INDEX

38
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Lê Kiên

The main managing agency responsible for science and technology (S&T) in Vietnam is the Ministry of Science and Technology (MOST). MOST's responsibilities include scientific research, technology development and innovation activities; development of science and technology potentials; intellectual property; standards, metrology and quality control; atomic energy, radiation and nuclear safety; and state management on public services in fields under the Ministry’s management as stipulated by law.


Author(s):  
Lara Kamal Jarouj, Anis Bilal, Nikola Abo Issa Lara Kamal Jarouj, Anis Bilal, Nikola Abo Issa

CT images were read and a 3D model of the tumor was created in the liver area, Then the values ​​of the radiation dose in terms of the depth resulting from (photons, neutrons and protons) were estimated and studied using the code (MCNP) after entering the data into it. The value of the radiation dose in terms of depth and curvature in photons, neutrons and protons radiation therapy was studied, from our findings in the research we note that protons are the best option for radiation therapy for high-depth liver cancer of photons and neutrons due to the lower dose at entry compared to the dose absorbed in the tumor area and its ability to deliver a greater amount of dose of neutrons and photons to the tumor area. We note that the values reached are acceptable for the treatment of tumors at a depth close to the surface. As for a large-depth tumor, it is necessary to increase high-energy radiation doses deep in the tumor area by accelerating proton therapy to protect natural organs from high-energy radiation doses.


Universe ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 503
Author(s):  
Lara Nava

Emission from Gamma-ray bursts is thought to be powered mainly by synchrotron radiation from energetic electrons. The same electrons might scatter these synchrotron seed photons to higher (>10 GeV) energies, building a distinct spectral component (synchrotron self-Compton, SSC). This process is expected to take place, but its relevance (e.g., the ratio between the SSC and synchrotron emitted power) is difficult to predict on the basis of current knowledge of physical conditions at GRB emission sites. Very high-energy radiation in GRBs can be produced also by other mechanisms, such as synchrotron itself (if PeV electrons are produced at the source), inverse Compton on external seed photons, and hadronic processes. Recently, after years of efforts, very high-energy radiation has been finally detected from at least four confirmed long GRBs by the Cherenkov telescopes H.E.S.S. and MAGIC. In all four cases, the emission has been recorded during the afterglow phase, well after the end of the prompt emission. In this work, I give an overview, accessible also to non-experts of the field, of the recent detections, theoretical implications, and future challenges, with a special focus on why very high-energy observations are relevant for our understanding of Gamma-ray bursts and which long-standing questions can be finally answered with the help of these observations.


2021 ◽  
pp. 105-129
Author(s):  
Anuj Gupta ◽  
Kapil Gupta ◽  
Sumit Saroha

Author(s):  
Tahina Ramiaramanantsoa ◽  
Judd D. Bowman ◽  
Evgenya L. Shkolnik ◽  
Robert Oliver Parke Loyd ◽  
David R. Ardila ◽  
...  

2021 ◽  
Vol 104 (8) ◽  
Author(s):  
Kim V. Berghaus ◽  
Peter W. Graham ◽  
David E. Kaplan ◽  
Guy D. Moore ◽  
Surjeet Rajendran
Keyword(s):  

Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2391
Author(s):  
Osman Taylan ◽  
Mona Abusurrah ◽  
Saba Amiri ◽  
Ehsan Nazemi ◽  
Ehsan Eftekhari-Zadeh ◽  
...  

Deposition of scale layers inside pipelines leads to many problems, e.g., reducing the internal diameter of pipelines, damage to drilling equipment because of corrosion, increasing energy consumption because of decreased efficiency of equipment, and shortened life, etc., in the petroleum industry. Gamma attenuation could be implemented as a non-invasive approach suitable for determining the mineral scale layer. In this paper, an intelligent system for metering the scale layer thickness independently of each phase’s volume fraction in an annular three-phase flow is presented. The approach is based on the use of a combination of an RBF neural network and a dual-energy radiation detection system. Photo peaks of 241Am and 133Ba registered in the two transmitted detectors, and scale-layer thickness of the pipe were considered as the network’s input and output, respectively. The architecture of the presented network was optimized using a trial-and-error method. The regression diagrams for the testing set were plotted, which demonstrate the precision of the system as well as correction. The MAE and RMSE of the presented system were 0.07 and 0.09, respectively. This novel metering system in three-phase flows could be a promising and practical tool in the oil, chemical, and petrochemical industries.


Sign in / Sign up

Export Citation Format

Share Document