High-Resolution Studies of Mass Transport Deposits: Outcrop Perspective for Understanding Modern Submarine Slope Failure and Associated Natural Hazards

Author(s):  
K. Ogata ◽  
G. A. Pini ◽  
A. Festa ◽  
Ž. Pogačnik ◽  
G. Tunis ◽  
...  
2018 ◽  
Vol 477 (1) ◽  
pp. 537-548 ◽  
Author(s):  
Benjamin Bellwald ◽  
Sverre Planke

AbstractHigh-resolution seismic data are powerful tools that can help the offshore industries to better understand the nature of the shallow subsurface and plan the development of vulnerable infrastructure. Submarine mass movements and shallow gas are among the most significant geohazards in petroleum prospecting areas. A variety of high-resolution geophysical datasets collected in the Barents Sea have significantly improved our knowledge of the shallow subsurface in recent decades. Here we use a c. 200 km2 high-resolution P-Cable 3D seismic cube from the Hoop area, SW Barents Sea, to study a 20–65 m thick glacial package between the seabed and the Upper Regional Unconformity (URU) horizons. Intra-glacial reflections, not visible in conventional seismic reflection data, are well imaged. These reflections have been mapped in detail to better understand the glacial deposits and to assess their impact on seabed installations. A shear margin moraine, mass transport deposits and thin soft beds are examples of distinct units only resolvable in the P-Cable 3D seismic data. The top of the shear margin moraine is characterized by a positive amplitude reflection incised by glacial ploughmarks. Sedimentary slide wedges and shear bands are characteristic sedimentary features of the moraine. A soft reflection locally draping the URU is interpreted as a coarser grained turbidite bed related to slope failure along the moraine. The bed is possibly filled with gas. Alternatively, this negative amplitude reflection represents a thin, soft bed above the URU. This study shows that P-Cable 3D data can be used successfully to identify and map the external and internal structures of ice stream shear margin moraines and that this knowledge is useful for site-survey investigations.


2019 ◽  
Vol 221 (1) ◽  
pp. 318-333
Author(s):  
Jonathan Ford ◽  
Angelo Camerlenghi

SUMMARY Seismic reflection images of mass-transport deposits often show apparently chaotic, disorded or low-reflectivity internal seismic facies. The lack of laterally coherent reflections can prevent horizon-based interpretation of internal structure. This study instead inverts for geostatistical parameters which characterize the internal heterogeneity of mass-transport deposits from depth-domain seismic reflection images. A Bayesian Markov Chain Monte Carlo inversion is performed to estimate posterior probability distributions for each geostatistical parameter. If the internal heterogeneity approximates an anisotropic von Kármán random medium these parameters can describe the structural fabric of the imaged mass-transport deposit in terms of lateral and vertical dominant scale lengths and the Hurst number (roughness). To improve the discrimination between vertical and lateral dominant scale lengths an estimate of the vertical dominant scale length from a borehole is used as a prior in the inversion. The method is first demonstrated on a synthetic multichannel seismic reflection image. The vertical and lateral dominant scale lengths are estimated with lower uncertainty when data from a synthetic borehole data are included. We then apply the method to a real data example from Nankai Trough, offshore Japan, where a large mass-transport deposit is imaged in a seismic profile and penetrated by a borehole. The results of the inversion show a downslope shortening in lateral scale length, consistent with progressive down-slope disaggregation of the mass-flow during transport. The dominant scale lengths can be used as a proxy for strain history, which can improve understanding of post-failure dynamics and emplacement of subacqueous mass-movements, important for constraining the geohazard potential from future slope failure.


2020 ◽  
Author(s):  
Thomas Thuesen ◽  
Haflidi Haflidason ◽  
William Helland-Hansen ◽  
Atle Nesje ◽  
Amalie Krog Klette ◽  
...  

<p>Western Norwegian fjord-valley systems represent archives of changes in sedimentary processes, and typically exhibit a pronounced change in depositional environment related to the transition from glacial to interglacial conditions. During a glacial situation, the fjord-valley system is emptied of its sediments, indicating that most sediments present in the fjord today, was deposited during and after the retreat of the last deglaciation. The purpose of our investigations is to gain a better understanding of the volumes and frequencies of mass transport deposits (subaquatic mass movements such as mass flows, debris flows, slides, slumps, and turbidites) in a recently glaciated fjord-valley system since the deglaciation (approx. 11 700 years BP) by looking at Fjærlandsfjorden, a tributary fjord of Sognefjorden in western Norway. The fjord-valley system consists of steep hillslopes and deep fjord basins with reliefs of up to 1600 meters. Jostedalsbreen, the largest glacier on mainland Europe (ca. 473 km<sup>2</sup>), currently feeds into the catchment of the fjord basin.</p><p>Here we present results from a cruise with R/V G.O. Sars in 2018, where sediment cores, TOPAS seismic profiles and bathymetric data were collected from Fjærlandsfjorden. The integration of high-resolution seismic (<30 cm vertical resolution) and bathymetry (3-5 m resolution) allows us to estimate the total volume of sediments within a fjord setting. By revealing when and how the sediments are deposited, we can establish sedimentation rates with a high spatial and temporal resolution within the fjord basin. X-ray Computed Tomography (CT-scanning) has been particularly useful to characterize sedimentary deposits as it allows for 3D visualization and analysis with ultra-high-resolution (50 μm voxel size) allowing us to see individual silt-sized grains in the sediment cores.</p><p>Seismic data reveal that the Fjærlandsfjorden basin infill consists of basal till, overlain by a thick, acoustically well-laminated glacimarine unit (up to a maximum thickness of ~105 meters thickness), occasionally disrupted by acoustically transparent lenses interpreted to be mass transport deposits (rock avalanches and debris flows). A 2-3 m thick hemipelagic unit drapes the glacimarine unit. Results reveal that ~90 % of the total sediment volume within the fjord basins was deposited as meltwater plumes during the retreat (mainly calving along the fjord) of the margin of the last glacial ice sheet. The retreat began at the mouth of Sognefjorden at the termination of the Younger Dryas Chronozone around 11 700 cal. yrs BP, to a frontal position at the head of Fjærlandsfjorden around 10 700 cal. yrs BP. The remaining volume of sediments are divided into mass transport deposits (MTDs) such as avalanches, debris flows, and flood-related turbidites as well as hemipelagic sedimentation. The largest MTD is a massive rock avalanche measuring up to 5 million m<sup>3</sup> that most likely caused a large tsunami when it occurred.</p>


Author(s):  
Barbara Claussmann ◽  
Julien Bailleul ◽  
Frank Chanier ◽  
Geoffroy Mahieux ◽  
Vincent Caron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document