scholarly journals Relationships Between CCZ and EA Equivalence Classes and Corresponding Code Invariants

Author(s):  
Kathy J. Horadam ◽  
Mercé Villanueva
Keyword(s):  
2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Jördis-Ann Schüler ◽  
Steffen Rechner ◽  
Matthias Müller-Hannemann

AbstractAn important task in cheminformatics is to test whether two molecules are equivalent with respect to their 2D structure. Mathematically, this amounts to solving the graph isomorphism problem for labelled graphs. In this paper, we present an approach which exploits chemical properties and the local neighbourhood of atoms to define highly distinctive node labels. These characteristic labels are the key for clever partitioning molecules into molecule equivalence classes and an effective equivalence test. Based on extensive computational experiments, we show that our algorithm is significantly faster than existing implementations within , and . We provide our Java implementation as an easy-to-use, open-source package (via GitHub) which is compatible with . It fully supports the distinction of different isotopes and molecules with radicals.


1989 ◽  
Vol 12 (3) ◽  
pp. 317-356
Author(s):  
David C. Rine

Partitioning and allocating of software components are two important parts of software design in distributed software engineering. This paper presents two general algorithms that can, to a limited extent, be used as tools to assist in partitioning software components represented as objects in a distributed software design environment. One algorithm produces a partition (equivalence classes) of the objects, and a second algorithm allows a minimum amount of redundancy. Only binary relationships of actions (use or non-use) are considered in this paper.


2021 ◽  
pp. 1-18
Author(s):  
YOTAM SMILANSKY ◽  
YAAR SOLOMON

Abstract We prove that in every compact space of Delone sets in ${\mathbb {R}}^d$ , which is minimal with respect to the action by translations, either all Delone sets are uniformly spread or continuously many distinct bounded displacement equivalence classes are represented, none of which contains a lattice. The implied limits are taken with respect to the Chabauty–Fell topology, which is the natural topology on the space of closed subsets of ${\mathbb {R}}^d$ . This topology coincides with the standard local topology in the finite local complexity setting, and it follows that the dichotomy holds for all minimal spaces of Delone sets associated with well-studied constructions such as cut-and-project sets and substitution tilings, whether or not finite local complexity is assumed.


1993 ◽  
Vol 7 (3) ◽  
pp. 409-412 ◽  
Author(s):  
David Madigan

Directed acyclic independence graphs (DAIGs) play an important role in recent developments in probabilistic expert systems and influence diagrams (Chyu [1]). The purpose of this note is to show that DAIGs can usefully be grouped into equivalence classes where the members of a single class share identical Markov properties. These equivalence classes can be identified via a simple graphical criterion. This result is particularly relevant to model selection procedures for DAIGs (see, e.g., Cooper and Herskovits [2] and Madigan and Raftery [4]) because it reduces the problem of searching among possible orientations of a given graph to that of searching among the equivalence classes.


2008 ◽  
Vol 17 (05) ◽  
pp. 579-599 ◽  
Author(s):  
MARIA RITA CASALI ◽  
PAOLA CRISTOFORI

The present paper follows the computational approach to 3-manifold classification via edge-colored graphs, already performed in [1] (with respect to orientable 3-manifolds up to 28 colored tetrahedra), in [2] (with respect to non-orientable 3-manifolds up to 26 colored tetrahedra), in [3] and [4] (with respect to genus two 3-manifolds up to 34 colored tetrahedra): in fact, by automatic generation and analysis of suitable edge-colored graphs, called crystallizations, we obtain a catalogue of all orientable 3-manifolds admitting colored triangulations with 30 tetrahedra. These manifolds are unambiguously identified via JSJ decompositions and fibering structures. It is worth noting that, in the present work, a suitable use of elementary combinatorial moves yields an automatic partition of the elements of the generated crystallization catalogue into equivalence classes, which turn out to be in one-to-one correspondence with the homeomorphism classes of the represented manifolds.


2011 ◽  
Vol 4 (1) ◽  
pp. 53-64
Author(s):  
Florida Levidiotis ◽  
Sandra Spiroff

2012 ◽  
Vol 26 (25) ◽  
pp. 1246006
Author(s):  
H. DIEZ-MACHÍO ◽  
J. CLOTET ◽  
M. I. GARCÍA-PLANAS ◽  
M. D. MAGRET ◽  
M. E. MONTORO

We present a geometric approach to the study of singular switched linear systems, defining a Lie group action on the differentiable manifold consisting of the matrices defining their subsystems with orbits coinciding with equivalence classes under an equivalence relation which preserves reachability and derive miniversal (orthogonal) deformations of the system. We relate this with some new results on reachability of such systems.


Sign in / Sign up

Export Citation Format

Share Document