one to one
Recently Published Documents


TOTAL DOCUMENTS

2628
(FIVE YEARS 674)

H-INDEX

56
(FIVE YEARS 6)

Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 134
Author(s):  
Chongyang Qiu ◽  
Xinfei Li ◽  
Jianhua Pang ◽  
Peichang Ouyang

Spirals, tilings, and hyperbolic geometry are important mathematical topics with outstanding aesthetic elements. Nonetheless, research on their aesthetic visualization is extremely limited. In this paper, we give a simple method for creating Escher-like hyperbolic spiral patterns. To this end, we first present a fast algorithm to construct Euclidean spiral tilings with cyclic symmetry. Then, based on a one-to-one mapping between Euclidean and hyperbolic spaces, we establish two simple approaches for constructing spiral tilings in hyperbolic models. Finally, we use wallpaper templates to render such tilings, which results in the desired Escher-like hyperbolic spiral patterns. The method proposed is able to generate a great variety of visually appealing patterns.


Author(s):  
Bojana Femić

We characterize in bicategorical terms actions of monoidal categories on the categories of representations of algebras and of relative Hopf modules. For this purpose we introduce 2-cocycles in any 2-category [Formula: see text]. We observe that under certain conditions the structures of pseudofunctors between bicategories are in one-to-one correspondence with (twisted) 2-cocycles in the image bicategory. In particular, for certain pseudofunctors to Cat, the 2-category of categories, one gets 2-cocycles in the free completion 2-category under Eilenberg–Moore objects, constructed by Lack and Street. We introduce (co)quasi-bimonads in [Formula: see text] and a suitable bicategory of Tambara (co)modules over (co)quasi-bimonads in [Formula: see text] fitting the setting of the latter pseudofuntors. We describe explicitly the involved 2-cocycles in this context and show how they are related to Sweedler’s and Hausser–Nill 2-cocycles in [Formula: see text], which we define. This allows us to recover some results of Schauenburg, Balan, Hausser and Nill for modules over commutative rings. We fit a version of the 2-category of bimonads in [Formula: see text], which we introduced in a previous paper, in a similar setting as above and recover a result of Laugwitz. We observe that pseudofunctors to Cat in general determine what we call pseudo-actions of hom-categories, which correspond to the whole range of a 2-cocycle, so that the described actions of categories appear as restrictions of these 2-cocycles to endo-hom categories.


2022 ◽  
pp. 61-65
Author(s):  
Rachael Kirtley ◽  
Ashley Lister
Keyword(s):  

Author(s):  
Jessie L. Moore ◽  
Angela Myers ◽  
Hayden McConnell

Abstract This article illustrates the Ten Salient Practices of Undergraduate Research Mentors with examples for English studies. The authors include both one-to-one and research-team examples, recognizing that although much English scholarship is solitary, peers and near peers play key roles in high-quality, mentored undergraduate research experiences.


2022 ◽  
Author(s):  
Elis Ratna Wulan ◽  
Dindin Jamaluddin ◽  
Wildan Noor Ramadhan

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Alexander A. Davydov ◽  
Stefano Marcugini ◽  
Fernanda Pambianco

<p style='text-indent:20px;'>The length function <inline-formula><tex-math id="M3">\begin{document}$ \ell_q(r,R) $\end{document}</tex-math></inline-formula> is the smallest length of a <inline-formula><tex-math id="M4">\begin{document}$ q $\end{document}</tex-math></inline-formula>-ary linear code with codimension (redundancy) <inline-formula><tex-math id="M5">\begin{document}$ r $\end{document}</tex-math></inline-formula> and covering radius <inline-formula><tex-math id="M6">\begin{document}$ R $\end{document}</tex-math></inline-formula>. In this work, new upper bounds on <inline-formula><tex-math id="M7">\begin{document}$ \ell_q(tR+1,R) $\end{document}</tex-math></inline-formula> are obtained in the following forms:</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \begin{equation*} \begin{split} &amp;(a)\; \ell_q(r,R)\le cq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(a)\; } q\;{\rm{ is \;an\; arbitrary \;prime\; power}},\; c{\rm{ \;is\; independent \;of\; }}q. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE2"> \begin{document}$ \begin{equation*} \begin{split} &amp;(b)\; \ell_q(r,R)&lt; 3.43Rq^{(r-R)/R}\cdot\sqrt[R]{\ln q},\; R\ge3,\; r = tR+1,\; t\ge1,\\ &amp;\phantom{(b)\; } q\;{\rm{ is \;an\; arbitrary\; prime \;power}},\; q\;{\rm{ is \;large\; enough}}. \end{split} \end{equation*} $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>In the literature, for <inline-formula><tex-math id="M8">\begin{document}$ q = (q')^R $\end{document}</tex-math></inline-formula> with <inline-formula><tex-math id="M9">\begin{document}$ q' $\end{document}</tex-math></inline-formula> a prime power, smaller upper bounds are known; however, when <inline-formula><tex-math id="M10">\begin{document}$ q $\end{document}</tex-math></inline-formula> is an arbitrary prime power, the bounds of this paper are better than the known ones.</p><p style='text-indent:20px;'>For <inline-formula><tex-math id="M11">\begin{document}$ t = 1 $\end{document}</tex-math></inline-formula>, we use a one-to-one correspondence between <inline-formula><tex-math id="M12">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes and <inline-formula><tex-math id="M13">\begin{document}$ (R-1) $\end{document}</tex-math></inline-formula>-saturating <inline-formula><tex-math id="M14">\begin{document}$ n $\end{document}</tex-math></inline-formula>-sets in the projective space <inline-formula><tex-math id="M15">\begin{document}$ \mathrm{PG}(R,q) $\end{document}</tex-math></inline-formula>. A new construction of such saturating sets providing sets of small size is proposed. Then the <inline-formula><tex-math id="M16">\begin{document}$ [n,n-(R+1)]_qR $\end{document}</tex-math></inline-formula> codes, obtained by geometrical methods, are taken as the starting ones in the lift-constructions (so-called "<inline-formula><tex-math id="M17">\begin{document}$ q^m $\end{document}</tex-math></inline-formula>-concatenating constructions") for covering codes to obtain infinite families of codes with growing codimension <inline-formula><tex-math id="M18">\begin{document}$ r = tR+1 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M19">\begin{document}$ t\ge1 $\end{document}</tex-math></inline-formula>.</p>


2022 ◽  
pp. 132-157
Author(s):  
Dawn Janke

This chapter will provide a research-based protocol for one-to-one writing conferencing that helps tutors and teachers to navigate the tension between standardizing multilingual students' language practices and honoring their rhetorically rich linguistic backgrounds through a series of activities in a ten-week writing center pedagogy course. This series of activities was specifically developed in an effort to respond to writing tutors who are always seeking strategies that effectively apply theoretical principles in practice. While this work focuses specifically on one-to-one writing tutoring, the topic of multilingual writing support is applicable to any English language learning context. By the end of this chapter, readers will have gained a practical strategy centered on using declarative, procedural, and conditional knowledge to help preservice tutors and teachers develop metalinguistic awareness and foster critical consciousness through one-to-one conferencing.


2021 ◽  
Vol 48 (12) ◽  
pp. 1251-1273
Author(s):  
Hee-Chul Kim ◽  
Sang-Young Cho ◽  
Chan-Su Shin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document