Non-periodic Discrete-Spline Wavelets

Author(s):  
Amir Z. Averbuch ◽  
Pekka Neittaanmäki ◽  
Valery A. Zheludev
Keyword(s):  
2007 ◽  
Vol 66 (6) ◽  
pp. 505-512
Author(s):  
A. D. Kukharev ◽  
Yu. S. Evstifeev ◽  
V. G. Yakovlev

2005 ◽  
Vol 2005 (1) ◽  
pp. 113-121 ◽  
Author(s):  
M. Lakestani ◽  
M. Razzaghi ◽  
M. Dehghan

Compactly supported linear semiorthogonal B-spline wavelets together with their dual wavelets are developed to approximate the solutions of nonlinear Fredholm-Hammerstein integral equations. Properties of these wavelets are first presented; these properties are then utilized to reduce the computation of integral equations to some algebraic equations. The method is computationally attractive, and applications are demonstrated through an illustrative example.


1995 ◽  
Vol 16 (1) ◽  
pp. 11-21 ◽  
Author(s):  
W. -H. Chen ◽  
C. -W. Wu

Author(s):  
Kanchan Lata Gupta ◽  
B. Kunwar ◽  
V. K. Singh

Spline function is of very great interest in field of wavelets due to its compactness and smoothness property. As splines have specific formulae in both time and frequency domain, it greatly facilitates their manipulation. We have given a simple procedure to generate compactly supported orthogonal scaling function for higher order B-splines in our previous work. Here we determine the maximum vanishing moments of the formed spline wavelet as established by the new refinable function using sum rule order method.


Sign in / Sign up

Export Citation Format

Share Document