spline wavelets
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 17)

H-INDEX

21
(FIVE YEARS 1)

2021 ◽  
Vol 20 ◽  
pp. 717-728
Author(s):  
Boris M. Shumilov

In this study, the method for decomposing splines of degree m and smoothness C^m-1 into a series of wavelets with zero moments is investigated. The system of linear algebraic equations connecting the coefficients of the spline expansion on the initial scale with the spline coefficients and wavelet coefficients on the embedded scale is obtained. The originality consists in the application of some preconditioner that reduces the system to a simpler band system of equations. Examples of applying the method to the cases of first-degree spline wavelets with two first zero moments and cubic spline wavelets with six first zero moments are presented. For the cubic case after splitting the system into even and odd rows, the resulting matrix acquires a seven-diagonals form with strict diagonal dominance, which makes it possible to apply an effective sweep method to its solution


2021 ◽  
Vol 2099 (1) ◽  
pp. 012016
Author(s):  
B M Shumilov

Abstract This study uses a zeroing property of the first six moments for constructing a splitting algorithm for the cubic spline wavelets. First, we construct a system of cubic basic spline-wavelets, realizing orthogonal conditions to all polynomials up to any degree. Then, using the homogeneous Dirichlet boundary conditions, we adapt spaces to the orthogonality to all polynomials up to the fifth degree on the closed interval. The originality of the study consists of obtaining implicit finite relations connecting the coefficients of the spline decomposition at the initial scale with the spline coefficients and wavelet coefficients at the nested scale by a tape system of linear algebraic equations with a non-degenerate matrix. After excluding the even rows of the system, the resulting transformation matrix has seven diagonals, instead of five as in the previous case with four zero moments. A modification of the system is performed, which ensures a strict diagonal dominance, and, consequently, the stability of the calculations. The comparative results of numerical experiments on approximating and calculating the derivatives of a discrete function are presented.


2021 ◽  
Vol 188 ◽  
pp. 368-388
Author(s):  
T.C. Theodosiou
Keyword(s):  
B Spline ◽  

Author(s):  
Борис Михайлович Шумилов

В пространстве кубических сплайнов построены вейвлеты, удовлетворяющие однородным граничным условиям Дирихле и обнулению первых четырех моментов. Получены неявные соотношения, связывающие сплайн-коэффициенты разложения на начальном уровне со сплайн-коэффициентами и вейвлет-коэффициентами на вложенном уровне ленточной системой линейных алгебраических уравнений с невырожденной матрицей. После расщепления на четные и нечетные уравнения матрица преобразования имеет пять (вместо трех в случае двух нулевых моментов) диагоналей. Доказано наличие строгого диагонального доминирования по столбцам. Для сравнения использованы вейвлеты с двумя нулевыми моментами и интерполяционные кубические сплайновые вейвлеты. Результаты численных экспериментов показывают, что схема с четырьмя нулевыми моментами точнее при аппроксимации функций, но грубее при аппроксимации второй производной. The article examines the problem of constructing a splitting algorithm for cubic spline wavelets. First, a cubic spline space is constructed for splines with homogeneous Dirichlet boundary conditions. Then, using the first four zero moments, the corresponding wavelet space is constructed. The resulting space consists of cubic spline wavelets that satisfy the orthogonality conditions for all thirddegree polynomials. The originality of the research lies in obtaining implicit relations connecting the coefficients of the spline expansion at the initial level with the spline coefficients and wavelet coefficients at the embedded level by a band system of linear algebraic equations with a nondegenerate matrix. Excluding the even rows of the system, the resulting transformation algorithm is obtained as a solution to a sequence of band systems of linear algebraic equations with five (instead of three in the case of two zero moments) diagonals. The presence of strict diagonal dominance over the columns is proved, which confirms the stability of the computational process. For comparison, we adopt the results of calculations using wavelets orthogonal to first-degree polynomials and interpolating cubic spline wavelets with the property of the best mean-square approximation of the second derivative of the function being approximated. The results of numerical experiments show that the scheme with four zero moments is more accurate in the approximation of functions, but becomes inferior in accuracy to the approximation of the second derivative.


2021 ◽  
Vol 173 (1) ◽  
Author(s):  
Vegard Antun ◽  
Øyvind Ryan

AbstractWe revisit the construction of wavelets on the interval with various degrees of polynomial exactness, and explain how existing schemes for orthogonal- and Spline wavelets can be extended to compactly supported delay-normalized wavelets. The contribution differs substantially from previous ones in how results are stated and deduced: linear algebra notation is exploited more heavily, and the use of sums and complicated index notation is reduced. This extended use of linear algebra eases translation to software, and a general open source implementation, which uses the deductions in this paper as a reference, has been developed. Key features of this implementation is its flexibility w.r.t. the length of the input, as well as its generality regarding the wavelet transform.


Author(s):  
Boris Shumilov

In this study, we use the vanishing property of the first six moments for constructing a splitting algorithm for cubic spline wavelets. First, we construct the corresponding wavelet space that satisfies the orthogonality conditions for all fifth-degree polynomials. Then, using the homogeneous Dirichlet boundary conditions, we adapt spaces to the closed interval. The originality of the study consists in obtaining implicit relations connecting the coefficients of the spline decomposition at the initial scale with the spline coefficients and wavelet coefficients at the nested scale by a tape system of linear algebraic equations with a non-degenerate matrix. After excluding the even rows of the system, in contrast to the case with two zero moments, the resulting transformation matrix has five (instead of three) diagonals. The results of numerical experiments on calculating the derivatives of a discrete function are presented.


Sign in / Sign up

Export Citation Format

Share Document