Biogas Quality Upgradation Using Musa bulbasiana: A Study on Domestic Biogas Plant

Author(s):  
Pinak Pani Baruah ◽  
Plaban Bora ◽  
Dhanapati Deka
Keyword(s):  
2017 ◽  
Author(s):  
Sachin Bhujade ◽  
Ajay Mate ◽  
Vikrant Katekar ◽  
Sanjay Sajjanwar
Keyword(s):  

2015 ◽  
Vol 14 (4) ◽  
pp. 745-749
Author(s):  
Daisuke Tashima ◽  
Yoki Asano ◽  
Shigeki Tomomatsu ◽  
Yasuhiro Sugimoto

2018 ◽  
Vol 147 ◽  
pp. 458-466 ◽  
Author(s):  
Massimiliano Dorella ◽  
Francesco Romagnoli ◽  
Arturs Gruduls ◽  
Massimo Collotta ◽  
Giuseppe Tomasoni
Keyword(s):  

2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


2021 ◽  
Vol 173 ◽  
pp. 12-23
Author(s):  
Robert Bedoić ◽  
Hrvoje Dorotić ◽  
Daniel Rolph Schneider ◽  
Lidija Čuček ◽  
Boris Ćosić ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2012 ◽  
Author(s):  
Slawomir Cerbin ◽  
Krzysztof Nowakowski ◽  
Jacek Dach ◽  
Krzysztof Pilarski ◽  
Piotr Boniecki ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document