Algebraic Field Extensions

Algebra II ◽  
2017 ◽  
pp. 295-314
Author(s):  
Alexey L. Gorodentsev
1987 ◽  
Vol 128 (1) ◽  
pp. 81-116 ◽  
Author(s):  
Robert Gilmer ◽  
William Heinzer

1992 ◽  
Vol 45 (3) ◽  
pp. 359-365 ◽  
Author(s):  
John N. Mordeson

2007 ◽  
Vol 312 (2) ◽  
pp. 1033-1074 ◽  
Author(s):  
F.J. Herrera Govantes ◽  
M.A. Olalla Acosta ◽  
M. Spivakovsky

Computability ◽  
2013 ◽  
Vol 2 (2) ◽  
pp. 75-92 ◽  
Author(s):  
François G. Dorais ◽  
Jeffry Hirst ◽  
Paul Shafer

2017 ◽  
Vol 66 (1) ◽  
pp. 385-394 ◽  
Author(s):  
Rakshith Rajashekar ◽  
Naoki Ishikawa ◽  
Shinya Sugiura ◽  
K.V.S. Hari ◽  
Lajos Hanzo

1984 ◽  
Vol 29 (3) ◽  
pp. 289-302 ◽  
Author(s):  
David E. Dobbs ◽  
Marco Fontana

A homomorphism f: R → T of (commutative) rings is said to be universally incomparable in case each base change R → S induces an incomparable map S → S⊗RT. The most natural examples of universally incomparable homomorphisms are the integral maps and radiciel maps. It is proved that a homomorphism f: R → T is universally incomparable if and only if f is an incomparable map which induces algebraic field extensions of fibres, k(f-1(Q))→k(Q), for each prime ideal Q of T. In several cases (f algebra-finite, T generated as R-algebra by primitive elements, T an overring of a one-dimensional Noetherian domain R), each universally incomparable map is shown to factor as a composite of an integral map and a special kind of radiciel.


Author(s):  
Julio R. Bastida ◽  
Roger Lyndon

Sign in / Sign up

Export Citation Format

Share Document