Bulletin of the Australian Mathematical Society
Latest Publications


TOTAL DOCUMENTS

6409
(FIVE YEARS 452)

H-INDEX

49
(FIVE YEARS 3)

Published By Cambridge University Press

1755-1633, 0004-9727

Author(s):  
MARTIN BUNDER ◽  
KEITH TOGNETTI ◽  
BRUCE BATES

Abstract When a page, represented by the interval $[0,1],$ is folded right over left $ n$ times, the right-hand fold contains a sequence of points. We specify these points and the order in which they appear in each fold. We also determine exactly where in the folded structure any point in $[0,1]$ appears and, given any point on the bottom line of the structure, which point lies at each level above it.


Author(s):  
PENG-JIE WONG

Abstract Stark conjectured that for any $h\in \Bbb {N}$ , there are only finitely many CM-fields with class number h. Let $\mathcal {C}$ be the class of number fields L for which L has an almost normal subfield K such that $L/K$ has solvable Galois closure. We prove Stark’s conjecture for $L\in \mathcal {C}$ of degree greater than or equal to 6. Moreover, we show that the generalised Brauer–Siegel conjecture is true for asymptotically good towers of number fields $L\in \mathcal {C}$ and asymptotically bad families of $L\in \mathcal {C}$ .


Author(s):  
C. S. ANABANTI ◽  
S. B. HART
Keyword(s):  

Abstract No group has exactly one or two nonpower subgroups. We classify groups containing exactly three nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups. Finally, we show that given any integer k greater than $4$ , there are infinitely many groups with exactly k nonpower subgroups.


Author(s):  
IKUYA KANEKO

Abstract The aim of this article is to establish the behaviour of partial Euler products for Dirichlet L-functions under the generalised Riemann hypothesis (GRH) via Ramanujan’s work. To understand the behaviour of Euler products on the critical line, we invoke the deep Riemann hypothesis (DRH). This work clarifies the relation between GRH and DRH.


Author(s):  
PHAM VIET HAI

Abstract We investigate unbounded, linear operators arising from a finite sum of composition operators on Fock space. Real symmetry and complex symmetry of these operators are characterised.


Author(s):  
MEIYING LÜ ◽  
ZHENLIANG ZHANG

Abstract For any x in $[0,1)$ , let $[a_1(x),a_2(x),a_3(x),\ldots ]$ be its continued fraction. Let $\psi :\mathbb {N}\to \mathbb {R}^+$ be such that $\psi (n) \to \infty $ as $n\to \infty $ . For any positive integers s and t, we study the set $$ \begin{align*}E(\psi)=\{(x,y)\in [0,1)^2: \max\{a_{sn}(x), a_{tn}(y)\}\ge \psi(n) \ {\text{for all sufficiently large}}\ n\in \mathbb{N}\} \end{align*} $$ and determine its Hausdorff dimension.


Sign in / Sign up

Export Citation Format

Share Document