Carbon Nanotubes as SPM Tips: Mechanical Properties of Nanotube Tips and Imaging

Author(s):  
Sophie Marsaudon ◽  
Charlotte Bernard ◽  
Dirk Dietzel ◽  
Cattien V. Nguyen ◽  
Anne Marie Bonnot ◽  
...  
2012 ◽  
Vol 2 (6) ◽  
pp. 166-168 ◽  
Author(s):  
Dr.T.Ch.Madhavi Dr.T.Ch.Madhavi ◽  
◽  
Pavithra.P Pavithra.P ◽  
Sushmita Baban Singh Sushmita Baban Singh ◽  
S.B.Vamsi Raj S.B.Vamsi Raj ◽  
...  

2015 ◽  
Vol 57 (5) ◽  
pp. 447-457 ◽  
Author(s):  
Hassan S. Hedia ◽  
Saad M. Aldousari ◽  
Ahmed K. Abdellatif ◽  
Gamal S. Abdelhaffez

Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 923
Author(s):  
Kun Huang ◽  
Ji Yao

The potential application field of single-walled carbon nanotubes (SWCNTs) is immense, due to their remarkable mechanical and electrical properties. However, their mechanical properties under combined physical fields have not attracted researchers’ attention. For the first time, the present paper proposes beam theory to model SWCNTs’ mechanical properties under combined temperature and electrostatic fields. Unlike the classical Bernoulli–Euler beam model, this new model has independent extensional stiffness and bending stiffness. Static bending, buckling, and nonlinear vibrations are investigated through the classical beam model and the new model. The results show that the classical beam model significantly underestimates the influence of temperature and electrostatic fields on the mechanical properties of SWCNTs because the model overestimates the bending stiffness. The results also suggest that it may be necessary to re-examine the accuracy of the classical beam model of SWCNTs.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 3140
Author(s):  
Kamil Dydek ◽  
Anna Boczkowska ◽  
Rafał Kozera ◽  
Paweł Durałek ◽  
Łukasz Sarniak ◽  
...  

The main aim of this work was the investigation of the possibility of replacing the heavy metallic meshes applied onto the composite structure in airplanes for lightning strike protection with a thin film of Tuball single-wall carbon nanotubes in the form of ultra-light, conductive paper. The Tuball paper studied contained 75 wt% or 90 wt% of carbon nanotubes and was applied on the top of carbon fibre reinforced polymer before fabrication of flat panels. First, the electrical conductivity, impact resistance and thermo-mechanical properties of modified laminates were measured and compared with the reference values. Then, flat panels with selected Tuball paper, expanded copper foil and reference panels were fabricated for lightning strike tests. The effectiveness of lightning strike protection was evaluated by using the ultrasonic phased-array technique. It was found that the introduction of Tuball paper on the laminates surface improved both the surface and the volume electrical conductivity by 8800% and 300%, respectively. The impact resistance was tested in two directions, perpendicular and parallel to the carbon fibres, and the values increased by 9.8% and 44%, respectively. The dynamic thermo-mechanical analysis showed higher stiffness and a slight increase in glass transition temperature of the modified laminates. Ultrasonic investigation after lightning strike tests showed that the effectiveness of Tuball paper is comparable to expanded copper foil.


Molecules ◽  
2021 ◽  
Vol 26 (15) ◽  
pp. 4423
Author(s):  
Marco A. Castro-Rojas ◽  
Yadira I. Vega-Cantu ◽  
Geoffrey A. Cordell ◽  
Aida Rodriguez-Garcia

Glass ionomer cements and resin-based composites are promising materials in restorative dentistry. However, their limited mechanical properties and the risk of bulk/marginal fracture compromise their lifespan. Intensive research has been conducted to understand and develop new materials that can mimic the functional behavior of the oral cavity. Nanotechnological approaches have emerged to treat oral infections and become a part of scaffolds for tissue regeneration. Carbon nanotubes are promising materials to create multifunctional platforms for dental applications. This review provides a comprehensive survey of and information on the status of this state-of-the-art technology and describes the development of glass ionomers reinforced with carbon nanotubes possessing improved mechanical properties. The applications of carbon nanotubes in drug delivery and tissue engineering for healing infections and lesions of the oral cavity are also described. The review concludes with a summary of the current status and presents a vision of future applications of carbon nanotubes in the practice of dentistry.


Sign in / Sign up

Export Citation Format

Share Document