scholarly journals Modeling Un-authorized Land Use Sprawl with Integrated Remote Sensing-GIS Technique and Cellular Automata

Author(s):  
Norzailawati Mohd. Noor ◽  
Mazlan Hashim
2020 ◽  
Author(s):  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA


2019 ◽  
Vol 8 (10) ◽  
pp. 454 ◽  
Author(s):  
Junfeng Kang ◽  
Lei Fang ◽  
Shuang Li ◽  
Xiangrong Wang

The Cellular Automata Markov model combines the cellular automata (CA) model’s ability to simulate the spatial variation of complex systems and the long-term prediction of the Markov model. In this research, we designed a parallel CA-Markov model based on the MapReduce framework. The model was divided into two main parts: A parallel Markov model based on MapReduce (Cloud-Markov), and comprehensive evaluation method of land-use changes based on cellular automata and MapReduce (Cloud-CELUC). Choosing Hangzhou as the study area and using Landsat remote-sensing images from 2006 and 2013 as the experiment data, we conducted three experiments to evaluate the parallel CA-Markov model on the Hadoop environment. Efficiency evaluations were conducted to compare Cloud-Markov and Cloud-CELUC with different numbers of data. The results showed that the accelerated ratios of Cloud-Markov and Cloud-CELUC were 3.43 and 1.86, respectively, compared with their serial algorithms. The validity test of the prediction algorithm was performed using the parallel CA-Markov model to simulate land-use changes in Hangzhou in 2013 and to analyze the relationship between the simulation results and the interpretation results of the remote-sensing images. The Kappa coefficients of construction land, natural-reserve land, and agricultural land were 0.86, 0.68, and 0.66, respectively, which demonstrates the validity of the parallel model. Hangzhou land-use changes in 2020 were predicted and analyzed. The results show that the central area of construction land is rapidly increasing due to a developed transportation system and is mainly transferred from agricultural land.


2020 ◽  
Author(s):  
Ismael Abdulrahman Ismael Abdulrahman Abdulrahman ◽  
shamal

AbstractTHE PROCESS OF SPATIOTEMPORAL CHANGES IN LAND USE LAND COVER (LULC) AND PREDICTING THEIR FUTURE CHANGES ARE HIGHLY IMPORTANT FOR LULC MANAGERS. ONE OF THE MOST IMPORTANT CHALLENGES IN LULC STUDIES IS CONSIDERED TO BE THE CREATION OF SIMULATION OF FUTURE CHANGE IN LULC THAT INVOLVE SPATIAL MODELING. THE PURPOSE OF THIS STUDY IS TO USE GIS AND REMOTE SENSING TO CLASSIFY LULC CLASSES IN DUHOK DISTRICT BETWEEN 1999 AND 2018, AND THEIR RESULTS CALCULATED USING AN INTEGRATED CELLULAR AUTOMATA AND CA-MARKOV CHAIN MODEL TO SIMULATE LULC CHANGES IN 2033. IN THIS STUDY, SATELLITE IMAGES FROM LANDSAT7 ETM AND LANDSAT8 OLI USED FOR DUHOK DISTRICT WHICH IS LOCATED IN THE NORTHERN PART OF IRAQ OBTAINED FROM UNITED STATES GEOLOGICAL SURVEY (USGS) FOR THE PERIODS (1999 AND 2018) ANALYZED USING REMOTE SENSING AND GIS TECHNIQUES IN ADDITION TO THE GROUND CONTROL POINTS, FOR EACH CLASS 60 GROUND POINTS HAVE TAKEN. TO SIMULATE FUTURE LULC CHANGES FOR 2033, INTEGRATED APPROACHES OF CELLULAR AUTOMATA AND CA-MARKOV MODELS UTILIZED IN IDRISI SELVA SOFTWARE. THE OUTCOMES DEMONSTRATE THAT DUHOK DISTRICT HAS EXPERIENCED A TOTAL OF 184.91KM CHANGES DURING THE PERIOD (TABLE 4). THE PREDICTION ALSO INDICATES THAT THE CHANGES WILL EQUAL TO 235.4 KM BY 2033 (TABLE 8). SOIL AND GRASS CONSTITUTES THE MAJORITY OF CHANGES AMONG LULC CLASSES AND ARE INCREASING CONTINUOUSLY. THE ACHIEVED KAPPA VALUES FOR THE MODEL ACCURACY ASSESSMENT HIGHER THAN 0.93 AND 0.85 FOR 1999 AND 2018 RESPECTIVELY SHOWED THE MODEL’S CAPABILITY TO FORECAST FUTURE LULC CHANGES IN DUHOK DISTRICT. THUS, ANALYZING TRENDS OF LULC CHANGES FROM PAST TO NOW AND PREDICT FUTURE APPLYING CA-MARKOV MODEL CAN PLAY AN IMPORTANT ROLE IN LAND USE PLANNING, POLICY MAKING, AND MANAGING RANDOMLY UTILIZED LULC CLASSES IN THE PROPOSED STUDY AREA.


Author(s):  
Swapnali Barman ◽  
Jaivir Tyagi ◽  
Waikhom Rahul Singh

Using remote sensing and GIS technique, we analyse the change detection of different land use/land cover (LULC) types that has taken place in Puthimari river basin during a two-decade period from 1999 to 2019. Supervised classification method with maximum likelihood algorithm have been applied to prepare the LULC maps. The LULC change detection has been performed employing a post-classification detection method. Puthimari is a north bank sub-catchment of River Brahmaputra, the northern part of which falls in Bhutan and the rest falls in the Assam state of India. The primary LULC types of the basin are, dense vegetation which is predominant in the upper catchment, crop land and rural settlement. Thus, five different classes have been considered for the analysis, viz., dense vegetation, water bodies, silted water, cropland and rural settlement. The results showed that the rural settlement and water bodies in the basin increased by 42.70% and 30.31% from 1999 to 2019. However, dense vegetation, silted water and cropland decreased by 9.24%, 27.47% and 28.10% during these two decades.


2017 ◽  
Vol 10 (4) ◽  
pp. 38 ◽  
Author(s):  
Munira Al-Ageili ◽  
Malek Mouhoub ◽  
Joseph Piwowar

Cities are complex spatial systems and modeling their dynamics of growth using traditional modeling techniques is a challenging task. Cellular automata (CA) have been widely used for modeling urban growth because of their computational simplicity, their explicit representation of time and space and their ability to generate complex patterns from the interaction of simple components of the system using simple rules. Integrating GIS tools and remote sensing data with CA has the potential to provide realistic simulation of the future urban growth of cities. The proposed approach is applied to model the growth of the City of Montreal. Land use/land cover maps derived from Landsat data acquired in 1975 and 1990 were used to train a CA model which was then used to project the land use in 2005.  A comparison of the projected and actual land uses for 2005 is presented and discussed.


2006 ◽  
Vol 131 (1-3) ◽  
pp. 409-419 ◽  
Author(s):  
Mustafa Bolca ◽  
Bahar Turkyilmaz ◽  
Yusuf Kurucu ◽  
Unal Altinbas ◽  
M. Tolga Esetlili ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document