Fiber Architecture Mapping of the Renal Medulla Using Respiratory Triggered Diffusion Tensor Imaging at 3 Tesla

Author(s):  
P. Martirosian ◽  
C. Schraml ◽  
N. F. Schwenzer ◽  
G. Steidle ◽  
C. Rossi ◽  
...  
2015 ◽  
Vol 30 (suppl_3) ◽  
pp. iii87-iii87
Author(s):  
Rosaria Lupica ◽  
Domenico Trimboli ◽  
Valeria Cernaro ◽  
Carmela Aloisi ◽  
Gaetano Montalto ◽  
...  

2013 ◽  
Vol 3 ◽  
pp. 53 ◽  
Author(s):  
Natalie C. Chuck ◽  
Günther Steidle ◽  
Iris Blume ◽  
Michael A. Fischer ◽  
Daniel Nanz ◽  
...  

Objectives: The purpose of this study was to evaluate to which degree investment of acquisition time in more encoding directions leads to better image quality (IQ) and what influence the number of encoding directions and the choice of b-values have on renal diffusion tensor imaging (DTI) parameters. Material and Methods: Eight healthy volunteers (32.3 y ± 5.1 y) consented to an examination in a 1.5T whole-body MR scanner. Coronal DTI data sets of the kidneys were acquired with systematic variation of b-values (50, 150, 300, 500, and 700 s/mm2) and number of diffusion-encoding directions (6, 15, and 32) using a respiratory-triggered echo-planar sequence (TR/TE 1500 ms/67 ms, matrix size 128 × 128). Additionally, two data sets with more than two b-values were acquired (0, 150, and 300 s/mm2 and all six b-values). Parametrical maps were calculated on a pixel-by-pixel basis. Image quality was determined with a reader score. Results: Best IQ was visually assessed for images acquired with 15 and 32 encoding directions, whereas images acquired with six directions had significantly lower IQ ratings. Image quality, fractional anisotropy, and mean diffusivity only varied insignificantly for b-values between 300 and 500 s/mm2. In the renal medulla fractional anisotropy (FA) values between 0.43 and 0.46 and mean diffusivity (MD) values between 1.8-2.1 × 10-3 mm2/s were observed. In the renal cortex, the corresponding ranges were 0.24-0.25 (FA) and 2.2-2.8 × 10-3 mm2/s (MD). Including b-values below 300 s/mm2, notably higher MD values were observed, while FA remained constant. Susceptibility artifacts were more prominent in FA maps than in MD maps. Conclusion: In DTI of the kidneys at 1.5T, the best compromise between acquisition time and resulting image quality seems the application of 15 encoding directions with b-values between 300 and 500 s/mm2. Including lower b-values allows for assessment of fast diffusing spin components.


2017 ◽  
Vol 27 (3) ◽  
pp. 193-201 ◽  
Author(s):  
Fabian Hilbert ◽  
Tobias Wech ◽  
Henning Neubauer ◽  
Simon Veldhoen ◽  
Thorsten Alexander Bley ◽  
...  

2011 ◽  
Vol 33 (6) ◽  
pp. 1312-1320 ◽  
Author(s):  
Wenshu Qian ◽  
Queenie Chan ◽  
Henry Mak ◽  
Zhongping Zhang ◽  
Marina-Portia Anthony ◽  
...  

2007 ◽  
Vol 18 (4) ◽  
pp. 716-721 ◽  
Author(s):  
Bengi Gürses ◽  
Neslihan Kabakci ◽  
Arzu Kovanlikaya ◽  
Zeynep Firat ◽  
Ali Bayram ◽  
...  

2020 ◽  
Vol 93 (1105) ◽  
pp. 20190562 ◽  
Author(s):  
You-Zhen Feng ◽  
Yao-Jiang Ye ◽  
Zhong-Yuan Cheng ◽  
Jun-Jiao Hu ◽  
Chuang-Biao Zhang ◽  
...  

Objective: Patients with diabetes mellitus, diabetic nephropathy (DN) and healthy donor were analyzed to test whether the early DN patients can be detected using both blood oxygenation level dependent (BOLD) and diffusion tensor imaging. Methods: This study was approved by the Ethics Committee of our hospital. MR images were acquired on a 3.0-Tesla MR system (Discovery MR750, General Electric, Milwaukee, WI). 30 diabetic patients were divided into NAU (normal to mildly increased albuminuria, N = 15) and MAU (moderately increased albuminuria, N = 15) group based on the absence or presence of microalbuminuria. 15 controls with sex- and age-matched were enrolled in the study. Prior to MRI scan, all participants were instructed to collect their fresh morning urine samples for quantitative measurement of urinary microalbumin and urinary creatinine. Then, the estimations of serum creatinine, serum uric acid, HbAlc and fasting plasma glucose as well as fundus examinations were performed in all subjects. Then, the values of albumin–creatinine ratio (ACR) and estimated glomerular filtration rate were also calculated. All subjects underwent renal diffusion tensor imaging (DTI) and BOLD acquisition after fasting for 4 h. Regions of interest were placed in renal medulla and cortex for evaluating apparent diffusion coefficient (ADC), fractional anisotropy (FA) and R2* values by two experienced radiologists. The consistency between the two observations was estimated using intragroup correlation coefficients. To test differences in ADC, FA and R2* values across the three groups, the data were analyzed using separate one-way ANOVAs. Post-hoc pair wise comparisons were then performed using t-test. To investigate the clinical relevance of imaging parameters in both regions across the three groups, the correlations of values of the ACR/estimated glomerular filtration rate and of the ADC/FA/R2* were calculated. Results: There was a high level of consistency of those ADC, FA and R2* values across the three groups on both renal cortex and medulla measured by the two doctors. The FA value of medulla in MAU group was lower than that in control (p < 0.01). The R2* value of medulla in the NAU group was higher than that in the control (p < 0.01), and the R2* value of medulla in the MAU group was lower than that in the control (p = 0.009) . Moreover, the current study revealed a decreasing trend in FA values of the renal medulla from the control group to NAU and MAU groups. Finally, a weak negatively correlation between medullary R2* and ACR was found in current study. Conclusion: Medullary R2* value might be a new more sensitive predictor of early DN. Meanwhile, BOLD imaging detected the medullary hypoxia at the simply diabetic stage, while DTI didn’t identify the medullary directional diffusion changes at this stage. Based on our assumption mentioned above, it’s presumable that BOLD imaging may be more sensitive for assessment of the early renal function changes than DTI. These imaging techniques are more accurate and practical than conventional tests. Advances in knowledge: Non-invasive MRI was used to detect renal function changes at early DN stage.


2019 ◽  
Vol 26 (8) ◽  
pp. 1010-1016
Author(s):  
Noam Nissan ◽  
Debbie Anaby ◽  
Ido Tavor ◽  
Yeruham Kleinbaum ◽  
Zohar Dotan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document