scholarly journals In-Situ Permeability from Integrated Poroelastic Reflection Coefficients

Author(s):  
Karel N. van Dalen
2010 ◽  
Vol 37 (12) ◽  
pp. n/a-n/a ◽  
Author(s):  
Karel N. van Dalen ◽  
Ranajit Ghose ◽  
Guy G. Drijkoningen ◽  
David M. J. Smeulders

2021 ◽  
Author(s):  
Michał Mierczak ◽  
Jerzy Karczewski

AbstractThe article describes the establishment of the location of agate geodes using the GPR method in the area of the Simota gully (Lesser Poland Voivodeship). Agates (a multicolored variety of gemstone of chalcedony group) have multifaceted values that informed their study. Traditional methods of geode location are less reliable, hence the attempt to use the GPR method. Measurements were taken at two study test sites with subsurface geology of weathered melaphyre and pyroclastic deposits using a GPR system (ProEx). A high-frequency antenna (1.6 GHz) was used along with the pre-established profiles of lengths of 6-m and 10-cm intervals. Furthermore, simple soil tests using the soil sampler tool were made prior to the GPR measurement. The GPR results show significant high attenuation of the electromagnetic energy interpreted to be due to clay components of the regolith. Advanced signal processing procedures (such as the attribute of the signal) were used on the data for better enhancement that aided interpretation. Other anomalies depicted on the radargrams were thought to be the presence of roots, pieces of melaphyres-targeted agates. Furtherance to ascertain the reflection coefficients as recorded on the GPR data, in situ samples (root pieces, melaphyres, agates) taken were tested in the laboratory for electric permittivity property. Based on the interpretation results, several agate geodes were dug out from the ground.


2016 ◽  
Vol 52 (4) ◽  
pp. 3113-3126 ◽  
Author(s):  
Vincent Allègre ◽  
Emily E. Brodsky ◽  
Lian Xue ◽  
Stephanie M. Nale ◽  
Beth L. Parker ◽  
...  

1980 ◽  
Vol 239 (1) ◽  
pp. E51-E56
Author(s):  
T. C. Welbourne ◽  
G. T. Bazer

These experiments were undertaken to determine the correspondence between acidosis-induced in situ motochondrial glutamine uptake and the process by which glutamine moves across the mitochondrial membrane. Feeding rats 1.5% NH4Cl for 2 wk accelerated the in situ uptake rate from 0.12 +/- 0.08 to 1.89 +/- 0.28 mu mol/min or some 16-fold. To determine glutamine uptake independent of its metabolic conversion, D-glutamine was employed. In isolated mitochondria from non-acidotic rat kidneys, D-glutamine diffused into 71 +/- 10% of the mitochondria water volume; in acidotic mitochondria the diffusion volume increased to 127 +/- 16%. The reflection coefficients (sigma) for a series of amides, including glutamine, were determined by gravimetrically following volume decrements in increasing concentrations of solute; D-glutamine's sigma fell from 1.05 +/- 0.08 to 0.50 +/- 0.06 in acidotic rat kidney mitchondria, The permeability coefficients corresponding to the measured sigma were 10(-7) cm/s and 10(-5) cm/s in nonacidosis and acidosis, respectively. When viewed in situ proximal tubule mitochondria undergo dramatic alterations during chronic acidosis. These involved an enlargement in the mitochondria particularly in the basal region of the cell and a reduction in number. Furthermore, numerous autophagic vacuoles, containing mitochondria, appear in the basal region. The findings are consistent availability that becomes activated during acidosis as a consequence of mitochondrial glutamine permeability resulting in increased ammoniagenesis and accelerated organelle turnover.


Sign in / Sign up

Export Citation Format

Share Document