high attenuation
Recently Published Documents


TOTAL DOCUMENTS

355
(FIVE YEARS 135)

H-INDEX

27
(FIVE YEARS 4)

2022 ◽  
Author(s):  
Nermeen Maged Okasha ◽  
AbdelHalem A. Zekry ◽  
Fatma A. Newagy

Abstract This paper combines the advantages of both VLC communication and RF communication for car-to-car applications to achieve a higher data rate, more range coverage, smaller delay, and smaller BER. In the proposed scheme, the VLC maximum communication distance is chosen as 100 m per-hop approximately, which can be extended through multi-hop up to the timeout window of 5 hops. In contrast, the RF maximum communication distance is chosen as 200 m per-hop approximately, which is reasonable at the frequency band of 70 GHz to 90 GHz due to the high attenuation at this frequency band. A MATLAB simulation for a car-to-car framework is built to demonstrate and compare the BER, throughput, and delay outcomes at a hybrid VLC and RF communication. Our results show that VLC can achieve up to four times of the RF throughput while maintaining low BER of 10-6 and small delay of 10-4 with respect to RF communication only.


2021 ◽  
Vol 54 (2F) ◽  
pp. 110-119
Author(s):  
Yasir Shyaa ◽  
Ali Al-Rahim

This research deals with structural interpretation of Khashim Al-Ahmer Gas Field North-Eastern Iraq in Diyala Province, using the interpretation of inhomogeneous velocity data. The specific target in this field is the gaseous Jeribe reservoir representing the L. Miocene-Tertiary period. A very thick layer of evaporates Al-Fatha Formation is overlap the Jeribe Formation in the gas field and play as a sealed bed and transition zone for faults movement as a thrust fault. The thrust fault with gas content negatively affected the seismic energy, causing a high attenuation below the level of Al-Fatha Formation in the dome of the Khashm Al-Ahmer structure. Using the interval velocities derived from the sonic logs of five surrounding wells that represent the inhomogeneous behavior of the seismic wave velocity within the rock layers, a model of the velocity behavior in the field was built and the extent of the Jeribe gas reservoir was reconstructed according to the new velocities interpretation data.


2021 ◽  
Vol 11 (1) ◽  
pp. 164
Author(s):  
Teruhiko Imamura ◽  
Wataru Gonoi ◽  
Masakazu Hori ◽  
Yohei Ueno ◽  
Nikhil Narang ◽  
...  

Background: The accuracy of the remote dielectric sensing (ReDSTM) system, which is a noninvasive electromagnetic-based technology to quantify lung fluid levels, particularly among those with small body size, remains uncertain. Methods: Hospitalized patients with and without heart failure underwent assessment of lung fluid levels with ReDS and successive chest computed tomography imaging. We performed a correlation analysis of the ReDS measurement, representing lung fluid levels, and computed tomography-derived high attenuation area percentage, which also provides a spatial quantification of lung fluid level. Results: A total of 46 patients (median 76 years old, 28 men), including 28 patients with heart failure, were included. The median ReDS value was 28% (interquartile: 23%, 33%), and the median percentage of high attenuation area was 21.6% (14.4%, 28.5%). ReDS values and percentage of high attenuation area were moderately correlated (r = 0.65, p < 0.001), irrespective of the existence of heart failure. ReDS value independently predicted the percentage of high attenuation area seen on computed tomography (p < 0.001). Conclusions: The ReDS system may be a promising, noninvasive tool to quantify fluid lung levels, as validated by comparison with chest computed tomography imaging. Further studies are warranted to validate the utility and applicability of this technology to a variety of clinical scenarios.


Author(s):  
James Holt ◽  
James C. Pechmann ◽  
Keith D. Koper

ABSTRACT The Yellowstone volcanic region is one of the most seismically active areas in the western United States. Assigning magnitudes (M) to Yellowstone earthquakes is a critical component of monitoring this geologically dynamic zone. The University of Utah Seismograph Stations (UUSS) has assigned M to 46,767 earthquakes in Yellowstone that occurred between 1 January 1984 and 31 December 2020. Here, we recalibrate the local magnitude (ML) distance and station corrections for the Yellowstone volcanic region. This revision takes advantage of the large catalog of earthquakes and an increase in broadband stations installed by the UUSS since the last ML update in 2007. Using a nonparametric method, we invert 7728 high-quality, analyst-reviewed amplitude measurements from 1383 spatially distributed earthquakes for 39 distance corrections and 20 station corrections. The inversion is constrained with four moment magnitude (Mw) values determined from time-domain inversion of regional-distance broadband waveforms by the UUSS. Overall, the new distance corrections indicate relatively high attenuation of amplitudes with distance. The distance corrections decrease with hypocentral distance from 3 km to a local minimum at 80 km, rise to a broad peak at 110 km, and then decrease again out to 180 km. The broad peak may result from superposition of direct arrivals with near-critical Moho reflections. Our ML inversion doubles the number of stations with ML corrections in and near the Yellowstone volcanic region. We estimate that the additional station corrections will nearly triple the number of Yellowstone earthquakes that can be assigned an ML. The new ML distance and station corrections will also reduce uncertainties in the mean MLs for Yellowstone earthquakes. The new MLs are ∼0.07 (±0.18) magnitude units smaller than the previous MLs and have better agreement with 12 Mws (3.15–4.49) determined by the UUSS and Saint Louis University.


Children ◽  
2021 ◽  
Vol 8 (12) ◽  
pp. 1172
Author(s):  
Dimitrios Moutafidis ◽  
Maria Gavra ◽  
Sotirios Golfinopoulos ◽  
Antonios Kattamis ◽  
George Chrousos ◽  
...  

In contrast to studies of adults with emphysema, application of fixed thresholds to determine low- and high-attenuation areas (air-trapping and parenchymal lung disease) in pediatric quantitative chest CT is problematic. We aimed to assess age effects on: (i) mean lung attenuation (full inspiration); and (ii) low and high attenuation thresholds (LAT and HAT) defined as mean attenuation and 1 SD below and above mean, respectively. Chest CTs from children aged 6–17 years without abnormalities were retrieved, and histograms of attenuation coefficients were analyzed. Eighty examinations were included. Inverse functions described relationships between age and mean lung attenuation, LAT or HAT (p < 0.0001). Predicted value for LAT decreased from −846 HU in 6-year-old to −950 HU in 13- to 17-year-old subjects (cut-off value for assessing emphysema in adults). %TLCCT with low attenuation correlated with age (rs = −0.31; p = 0.005) and was <5% for 9–17-year-old subjects. Inverse associations were demonstrated between: (i) %TLCCT with high attenuation and age (r2 = 0.49; p < 0.0001); (ii) %TLCCT with low attenuation and TLCCT (r2 = 0.47; p < 0.0001); (iii) %TLCCT with high attenuation and TLCCT (r2 = 0.76; p < 0.0001). In conclusion, quantitative analysis of chest CTs from children without lung disease can be used to define age-specific LAT and HAT for evaluation of pediatric lung disease severity.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8053
Author(s):  
Johannes Hoppenbrock ◽  
Matthias Bücker ◽  
Jakob Gallistl ◽  
Adrián Flores Orozco ◽  
Carlos Pita de la Paz ◽  
...  

Lakes are integrators of past climate and ecological change. This information is stored in the sediment record at the lake bottom, and to make it available for paleoclimate research, potential target sites with undisturbed and continuous sediment sequences need to be identified. Different geophysical methods are suitable to identify, explore, and characterize sediment layers prior to sediment core recovery. Due to the high resolution, reflection seismic methods have become standard for this purpose. However, seismic measurements cannot always provide a comprehensive image of lake-bottom sediments, e.g., due to lacking seismic contrasts between geological units or high attenuation of seismic waves. Here, we developed and tested a complementary method based on water-borne electrical-resistivity tomography (ERT) measurements. Our setup consisted of 13 floating electrodes (at 5 m spacing) used to collect ERT data with a dipole–dipole configuration. We used a 1D inversion to adjust a layered-earth model, which facilitates the implementation of constraints on water depth, water resistivity, and sediment resistivity as a priori information. The first two parameters were readily obtained from the echo-sounder and conductivity-probe measurements. The resistivity of sediment samples can also be determined in the laboratory. We applied this approach to process ERT data collected on a lake in southern Mexico. The direct comparison of ERT data with reflection seismic data collected with a sub-bottom profiler (SBP) showed that we can significantly improve the sediment-thickness estimates compared to unconstrained 2D inversions. Down to water depths of 20 m, our sediment thickness estimates were close to the sediment thickness derived from collocated SBP seismograms. Our approach represents an implementation of ERT measurements on lakes and complements the standard lake-bottom exploration by reflection seismic methods.


Author(s):  
Kamel Fahmi Bou-Hamdan ◽  
Azza Hashim Abbas

AbstractIn the oil and gas industry, hydraulic fracturing (HF) is a common application to create additional permeability in unconventional reservoirs. Using proppant in HF requires understanding the interactions with rocks such as shale, and the mechanical aspects of their contacts. However, these studies are limited in literature and inconclusive. Therefore, the current research aims to apply a novel method, mainly ultrasound, to investigate the proppant embedment phenomena for different rocks. The study used proppant materials that are susceptible to fractures (glass) and others that are hard and do not break (steel). Additionally, the materials used to represent brittle shale rocks (polycarbonate and phenolic) were based on the ratio of elastic modulus to yield strength (E/Y). A combination of experimental and numerical modeling was used to investigate the contact stresses, deformation, and vertical displacement. The results showed that the relation between the stresses and ultrasound reflection coefficient follows a power-law equation, which validated the method application. From the experiments, plastic deformation was encountered in phenolic surfaces despite the corresponding contacted material. Also, the phenolic stresses showed a difference compared to polycarbonate for both high and low loads, which is explained by the high attenuation coefficient of phenolic that limited the quality of the reflected signal. The extent of vertical displacements surrounding the contact zone was greater for the polycarbonate materials due to the lower E/Y, while the phenolic material was limited to smaller areas not exceeding 50% of polycarbonate for all tested load conditions. Therefore, the study confirms that part of the contact energy in phenolic material was dissipated in the plastic deformation, indicating greater proppant embedment, and leading to a loss in fracture conductivity for rocks of higher E/Y.


2021 ◽  
Author(s):  
Ahmed Mohamed Reda ◽  
A A El-Daly ◽  
E. A. Eid

Abstract In this work, the shielding performance of (97.3–x)Pb–xCd–2.7Ag (x=10, 18, and 30) ternary alloys against neutrons and gamma rays has been investigated. The microstructure, thermal and mechanical properties of the ternary alloys were examined. The total mass attenuation coefficients, μ⁄ρ, for prepared alloys were determined at 662, 1173, and 1332 keV photon energies using NaI (Tl) scintillation detector. The theoretical values of μ⁄ρ were calculated using WinXCom program depending on the mixture rule. The estimated values were compared with the measured values for all investigated alloys. Atomic cross-section, σa, electronic cross-section, σe, effective atomic number, Zeff, effective electron number, Neff, and GP fitting parameters (b, c, a, Xk, and d) were determined. The exposure buildup factor, EBF, have been also calculated. Fast neutron attenuation for the prepared samples have been investigated via the macroscopic effective removal cross-section (∑_R) calculation. Also, thermal neutron attenuation has been evaluated via neutron scattering calculator. The results show that the alloys containing 10 and 30% Cd compromise between superior tensile strength and Young modulus, while the pasty range, heat of fusion and ductility decreased with increasing Cd content. Moreover, the prepared ternary alloys have a high attenuation ability for gamma rays as the standard Pb. The increase of Cd ratio also significantly enhances the thermal neutron attenuation by amazing way along with the increase in the attenuation rate of fast neutrons.


2021 ◽  
Vol 5 (1) ◽  
pp. 27
Author(s):  
Christine Bauer ◽  
Rebecca Wagner ◽  
Beate Orberger ◽  
Markus Firsching ◽  
Christiane Wagner ◽  
...  

X-ray transmission (XRT) and computed tomography (CT) was used on five samples from the Niaz porphyry Cu–Mo deposit in Iran, representing different alteration zones. Analysis of three-dimensional CT data revealed structural information and groups of elements with low, medium and high attenuation, which were assigned to minerals previously determined by scanning electron microscopy. Thus, the mineralization can be located, and the metal/waste ratio can be estimated, leading to more precise ore body modelling and process parameter determination. CT is useful for selected samples as it is time consuming. XRT can be used as real-time process on conveyor belts.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1421
Author(s):  
Jiannan Zhang ◽  
Younho Cho ◽  
Jeongnam Kim ◽  
Azamatjon Kakhramon ugli Malikov ◽  
Young H. Kim ◽  
...  

The coating is applied to prevent corrosion on the surface of ships or marine structures, and the thickness of the coating affects its anti-corrosion effect. As a result, non-destructive testing (NDT) is required to measure coating thickness, and ultrasonic NDT is a convenient and quick way to measure the thickness of underwater coatings. However, the offshore coating’s energy attenuation and absorption rates are high, the ultrasonic pulse echo test is difficult, and the testing environment is harsh. Because of the coating’s high attenuation, the distance of the optimal water delay line designed based on the reflection coefficient of the vertically incident wave is used. To accurately measure the thickness of the coating material, TOF of the reflected echo on the time-domain waveform was evaluated. The experimental results show that, when compared to caliper measurements, the coating thickness measured by the proposed method has a lower error and can be used for accurate measurement. The use of ultrasonic water immersion measurement is almost limitless in terms of size, location, and material of the object to be measured, and it is expected to be used to measure the thickness of the surface coating of ships or marine structures in the water.


Sign in / Sign up

Export Citation Format

Share Document