A Cross-Layer Design for Energy Efficient Sleep Scheduling in Uplink Transmissions of IEEE 802.16 Broadband Wireless Networks

Author(s):  
Jen-Jee Chen ◽  
Shih-Lin Wu ◽  
Wei-Yu Lin
Author(s):  
Zhong Zhou ◽  
Jun-Hong Cui ◽  
Shengli Zhou ◽  
Shuguang Cui

In this chapter, we focus on the energy efficient cooperative communication with random node cooperation for wireless networks. By “random,” we mean that the cooperative nodes for each communication event are randomly selected based on the network and channel conditions. Different from the conventional deterministic cooperative communication where cooperative nodes are determined prior to the communication, here the number of cooperative nodes and the cooperation pattern may be random, which is more practical given the random nature of the channels among the source nodes, relay nodes, and destination nodes. In addition, it is more robust to the dynamic wireless network environment. Starting with a thorough literature survey, we then discuss the challenges for random cooperative communication systems. Afterwards, two examples are presented to illustrate the design methodologies. In the first example, we analyze a simple scheme for clustered wireless networks, where cooperative communication is deployed in the long-haul inter-cluster transmissions to improve the energy efficiency. We quantify the energy performance and emphasize its difference from the conventional deterministic ones. In the second example, we consider the cross-layer design between the physical layer and the medium access control (MAC) layer for the one-hop random single-relay networks. We unify the power control and the relay selection at the physical layer into the MAC signaling in a distributed fashion. This example clearly shows the strength of cross-layer design for energy-efficient cooperative systems with random node collaboration. Finally, we conclude with discussions over possible future research directions.


Author(s):  
M. Deva Priya ◽  
M. Sangeetha ◽  
A. Christy Jeba Malar ◽  
E. Dhivyaprabha ◽  
N. Kiruthiga ◽  
...  

2015 ◽  
Vol 7 (3) ◽  
pp. 1 ◽  
Author(s):  
Haider Noori AL-Hashimi ◽  
Waleed Noori Hussein

VANET Networks are one of the main next generation wireless networks which are envisaged to be an integration of homogeneous and heterogeneous wireless networks. The inter-networking of these wireless networks with the Internet will provide ubiquitous access to roaming network users. However, a seamless handover mechanism with negligible handover delay is required to maintain active connections during roaming across these networks. Several solutions, mainly involving host-based localized mobility management schemes, have been widely proposed to reduce handover delay among homogeneous and heterogeneous wireless networks. However, the handover delay remains high and unacceptable for delay-sensitive services such as real-time and multimedia services. Moreover, these services will be very common in next generation wireless networks. Unfortunately, these widely proposed host-based localized mobility management schemes involve the vehicle in mobility-related signalling hence effectively increasing the handover delay. Furthermore, these schemes do not properly address the advanced handover scenarios envisaged in future wireless networks. This paper, therefore, proposes a VANET mobility management framework utilizing cross-layer design, the IEEE 802.21 future standard, and the recently emerged network-based localized mobility management protocol, Proxy Mobile IPv6, to further reduce handover delay.


Sign in / Sign up

Export Citation Format

Share Document