Some Effects of Temperature and Food on the Rate of Oxygen Consumption by Mytilus edulis L

Author(s):  
B. L. Bayne ◽  
R. J. Thompson ◽  
J. Widdows
1967 ◽  
Vol 45 (11) ◽  
pp. 1763-1771 ◽  
Author(s):  
Jane C. Roberts ◽  
Robert E. Smith

The effects of temperature in vitro upon metabolic rates of homogenates of brown fat and liver from control and cold-acclimated rats have been examined over the range 10–37 °C. At all temperatures, brown adipose tissue exhibits a higher rate of oxygen consumption [Formula: see text] than does liver, α-ketoglutarate being used as substrate. At 10 °C, brown adipose tissue retains a larger percentage (36–38%) of its 37 °C metabolic rate than does liver (22–24%).Q10 values and energies of activation (Ea) have been determined and compared with other data reported for these tissues. At 20 °C, breaks appear in the Arrhenius plots for liver from both control and cold-acclimated rats and also for brown fat from control rats, but not for the brown fat from cold-acclimated rats. Thus brown adipose tissue from cold-acclimated rats retains relatively higher levels of respiration at temperatures below the 20 °C breaking point than does brown fat from control rats.In view of previously reported cold-induced increases in mass, vascularity, and [Formula: see text] of brown fat, this decreased temperature sensitivity in the cold-acclimated rats appears wholly consonant with the adaptive behavior of brown fat in its role as a thermogenic effector.


Author(s):  
B. L. Bayne ◽  
C. Scullard

The results of experiments recorded by Bayne & Scullard (1977) confirmed earlier studies (Bayne, 1973) in describing a decline in the rate of oxygen uptake (Vo2) by Mytilus edulis during starvation, eventually reaching a steady-state value, called the standard rate of oxygen consumption. Earlier experiments had also shown that if such starved mussels were fed, oxygen uptake increased rapidly to a high level called the active rate of oxygen consumption (Thompson & Bayne, 1972; Bayne, Thompson & Widdows, 1973). Some of this increase in metabolic rate is undoubtedly due to an increased filtration rate that is stimulated by the presence of food (the ‘mechanical cost of feeding’ discussed by Bayne et al. 1976), and part is due to the ‘physiological costs of feeding’, which includes energy utilized in digestion and assimilation of the food, and energy that is lost during deamination and other catabolic processes that accompany digestion (Warren & Davis, 1967). Increases in metabolic rate associated with feeding have been called the specific dynamic action (SDA) of the ration (see Harper, 1971, for a discussion) or the apparent SDA (Beamish, 1974)5 and they have been related to aspects of protein metabolism (Krebs, 1964). This paper describes the results of some experiments designed to examine the relationships between SDA and ammonia excretion in Mytilus edulis L.


In a comparison of muscles poisoned with mono-iodo-acetic acid (IAA) in the presence and in the absence of oxygen respectively, Lundsgaard (1930) found:- (1) That the spontaneous breakdown of phosphagen in poisoned resting muscle is much more rapid under anaerobic conditions. (2) That the onset of the characteristic contracture produced by IAA is accompanied always by an increase in the rate of oxygen consumption.


1996 ◽  
Vol 271 (3) ◽  
pp. F717-F722
Author(s):  
G. Bajaj ◽  
M. Baum

Intracellular cystine loading by use of cystine dimethyl ester (CDME) results in a generalized inhibition in proximal tubule transport due, in part, to a decrease in intracellular ATP. The present study examined the importance of phosphate and metabolic substrates in the proximal tubule dysfunction produced by cystine loading. Proximal tubule intracellular phosphorus was 1.8 +/- 0.1 in control tubules and 1.1 +/- 0.1 nmol/mg protein in proximal tubules incubated in vitro with CDME P < 0.001). Infusion of sodium phosphate in rabbits and subsequent incubation of proximal tubules with a high-phosphate medium attenuated the decrease in proximal tubule respiration and prevented the decrease in intracellular ATP with cystine loading. Tricarboxylic acid cycle intermediates have been shown to preserve oxidative metabolism in phosphate-depleted proximal tubules. In proximal tubules incubated with either 1 mM valerate or butyrate, there was a 42 and 34% reduction (both P < 0.05) in the rate of oxygen consumption with cystine loading. However, tubules incubated with 1 mM succinate or citrate had only a 13 and 14% P = NS) reduction in the rate of oxygen consumption, respectively. These data are consistent with a limitation of intracellular phosphate in the pathogenesis of the proximal tubule dysfunction with cystine loading.


1995 ◽  
Vol 41 (4-5) ◽  
pp. 372-377 ◽  
Author(s):  
João P. S. Cabral

Pseudomonas syringae cells starved in buffer released orcinol-reactive molecules and materials that absorbed ultraviolet light. The number of cells culturable in nutrient medium decreased more rapidly than the number of intact particles determined by microscopy. The results suggested that starvation resulted in the lysis of an increasing number of cells, and that a fraction of the intact particles were not culturable. Starvation also resulted in a decrease in the rate of oxygen consumption with acetate, glycerol, and succinate, but at different levels. Whereas the respiration of acetate and glycerol decreased concomitantly with culturability, the respiration of succinate decreased to levels similar to the concentration of intact cells, suggesting that all intact particles respired the succinate, but only the culturable cells respired the acetate and glycerol. The results suggest that measuring the activity of the electron-transport system can overestimate the viability of starved bacterial cells, and that complex metabolic activities such as the respiration of acetate and glycerol are probably better suited for the evaluation of this parameter.Key words: Pseudomonas syringae, starvation, culturability, viability, respiration.


Sign in / Sign up

Export Citation Format

Share Document