anaerobic conditions
Recently Published Documents


TOTAL DOCUMENTS

2337
(FIVE YEARS 332)

H-INDEX

85
(FIVE YEARS 9)

2022 ◽  
Vol 12 ◽  
Author(s):  
Taisuke Wakamatsu ◽  
Saki Mizobuchi ◽  
Fumiaki Mori ◽  
Taiki Futagami ◽  
Takeshi Terada ◽  
...  

Substrate-induced gene expression (SIGEX) is a high-throughput promoter-trap method. It is a function-based metagenomic screening tool that relies on transcriptional activation of a reporter gene green fluorescence protein (gfp) by a metagenomic DNA library upon induction with a substrate. However, its use is limited because of the relatively small size of metagenomic DNA libraries and incompatibility with screening metagenomes from anaerobic environments. In this study, these limitations of SIGEX were addressed by fine-tuning metagenome DNA library construction protocol and by using Evoglow, a green fluorescent protein that forms a chromophore even under anaerobic conditions. Two metagenomic libraries were constructed for subseafloor sediments offshore Shimokita Peninsula (Pacific Ocean) and offshore Joetsu (Japan Sea). The library construction protocol was improved by (a) eliminating short DNA fragments, (b) applying topoisomerase-based high-efficiency ligation, (c) optimizing insert DNA concentration, and (d) column-based DNA enrichment. This led to a successful construction of metagenome DNA libraries of approximately 6 Gbp for both samples. SIGEX screening using five aromatic compounds (benzoate, 3-chlorobenzoate, 3-hydroxybenzoate, phenol, and 2,4-dichlorophenol) under aerobic and anaerobic conditions revealed significant differences in the inducible clone ratios under these conditions. 3-Chlorobenzoate and 2,4-dichlorophenol led to a higher induction ratio than that for the other non-chlorinated aromatic compounds under both aerobic and anaerobic conditions. After the further screening of induced clones, a clone induced by 3-chlorobenzoate only under anaerobic conditions was isolated and characterized. The clone harbors a DNA insert that encodes putative open reading frames of unknown function. Previous aerobic SIGEX attempts succeeded in the isolation of gene fragments from anaerobes. This study demonstrated that some gene fragments require a strict in vivo reducing environment to function and may be potentially missed when screened by aerobic induction. The newly developed anaerobic SIGEX scheme will facilitate functional exploration of metagenomes from the anaerobic biosphere.


Fermentation ◽  
2022 ◽  
Vol 8 (1) ◽  
pp. 27
Author(s):  
Pilar Santamaría ◽  
Lucía González-Arenzana ◽  
Rocío Escribano-Viana ◽  
Patrocinio Garijo ◽  
Rosa López ◽  
...  

The aim of the work was to study the vinification by carbonic maceration carried out in small volume tanks, because the use of these deposits is necessary in scientific studies where repetitions are mandatory. For this, vinifications were carried out in 300-kg tanks with grapes of the Tempranillo variety. We studied the development of the alcoholic and malolactic fermentations and the microorganisms responsible for them. The results showed an alteration of the wines as a result of the low levels of yeast and the huge bacteria population. This was probably due to the difficulty in maintaining the necessary temperature and anaerobic conditions in the small tanks employed.


2022 ◽  
Vol 10 (1) ◽  
pp. 122
Author(s):  
Miroslav Oborník

Eukaryotic organelles supposedly evolved from their bacterial ancestors because of their benefits to host cells. However, organelles are quite often retained, even when the beneficial metabolic pathway is lost, due to something other than the original beneficial function. The organellar function essential for cell survival is, in the end, the result of organellar evolution, particularly losses of redundant metabolic pathways present in both the host and endosymbiont, followed by a gradual distribution of metabolic functions between the organelle and host. Such biological division of metabolic labor leads to mutual dependence of the endosymbiont and host. Changing environmental conditions, such as the gradual shift of an organism from aerobic to anaerobic conditions or light to dark, can make the original benefit useless. Therefore, it can be challenging to deduce the original beneficial function, if there is any, underlying organellar acquisition. However, it is also possible that the organelle is retained because it simply resists being eliminated or digested untill it becomes indispensable.


Author(s):  
Lavanya Raajaraam ◽  
Karthik Raman

Microbial production of chemicals is a more sustainable alternative to traditional chemical processes. However, the shift to bioprocess is usually accompanied by a drop in economic feasibility. Co-production of more than one chemical can improve the economy of bioprocesses, enhance carbon utilization and also ensure better exploitation of resources. While a number of tools exist for in silico metabolic engineering, there is a dearth of computational tools that can co-optimize the production of multiple metabolites. In this work, we propose co-FSEOF (co-production using Flux Scanning based on Enforced Objective Flux), an algorithm designed to identify intervention strategies to co-optimize the production of a set of metabolites. Co-FSEOF can be used to identify all pairs of products that can be co-optimized with ease using a single intervention. Beyond this, it can also identify higher-order intervention strategies for a given set of metabolites. We have employed this tool on the genome-scale metabolic models of Escherichia coli and Saccharomyces cerevisiae, and identified intervention targets that can co-optimize the production of pairs of metabolites under both aerobic and anaerobic conditions. Anaerobic conditions were found to support the co-production of a higher number of metabolites when compared to aerobic conditions in both organisms. The proposed computational framework will enhance the ease of study of metabolite co-production and thereby aid the design of better bioprocesses.


2022 ◽  
Vol 1048 ◽  
pp. 476-484
Author(s):  
Vo Ngoc An ◽  
Van Thinh Pham ◽  
Vinh Long Do ◽  
Nguyen Quoc Duy ◽  
Thu Thuy Dang ◽  
...  

The large amount of jackfruit (Artocarpus heterophyllus Lam) harvested and their short use time caused many difficulties for the farmers. Fortunately, the high sugar content in jackfruit meat is a hopeful substance for wine production. This study aimed to consider the effect of yeast strains and their concentration on fermented jackfruit solution. Jackfruit juice with 14 °Brix is ​​fermented using 0.005 to 0.015% (w/v) Saccharomyces cerevisiae RV002, Mauri Instant Dry Yeast yeast under anaerobic conditions for 1 to 4 days at 30 °C. Survey samples were checked once a day to analyze the indicators. The functional report of the sugar in the fermentation time, shows that the higher incidence of yeast cultures and the initial sugar concentration inhibited yeast growth. The results showed that fermentation from jackfruit meat with 25 °Brix using Saccharomyces cerevisiae RV002 yeast with concentration of 0.01% for 3 days is the best to create a good quality with ethanol content 4,9% and characteristic aroma of jackfruit.


Molecules ◽  
2022 ◽  
Vol 27 (1) ◽  
pp. 294
Author(s):  
Fangting Wu ◽  
Ying Zhou ◽  
Wenyu Pei ◽  
Yuhan Jiang ◽  
Xiaohui Yan ◽  
...  

Poly-(3-hydroxybutyrate) (PHB) is a polyester with biodegradable and biocompatible characteristics and has many potential applications. To reduce the raw material costs and microbial energy consumption during PHB production, cheaper carbon sources such as sucrose were evaluated for the synthesis of PHB under anaerobic conditions. In this study, metabolic network analysis was conducted to construct an optimized pathway for PHB production using sucrose as the sole carbon source and to guide the gene knockout to reduce the generation of mixed acid byproducts. The plasmid pMCS-sacC was constructed to utilize sucrose as a sole carbon source, and the cascaded promoter P3nirB was used to enhance PHB synthesis under anaerobic conditions. The mixed acid fermentation pathway was knocked out in Escherichia coli S17-1 to reduce the synthesis of byproducts. As a result, PHB yield was improved to 80% in 6.21 g/L cell dry weight by the resulted recombinant Escherichia coli in a 5 L bed fermentation, using sucrose as the sole carbon source under anaerobic conditions. As a result, the production costs of PHB will be significantly reduced.


Chemosphere ◽  
2022 ◽  
Vol 287 ◽  
pp. 132150
Author(s):  
Fang Chen ◽  
Pan Lei ◽  
Peng He ◽  
Chunyao Gu ◽  
Yaozong Chen ◽  
...  

2021 ◽  
Vol 10 (1) ◽  
pp. 73
Author(s):  
Vivienne Edwards ◽  
Dylan L. Smith ◽  
Francoise Meylan ◽  
Linda Tiffany ◽  
Sarah Poncet ◽  
...  

Very little is known about disease transmission via the gut microbiome. We hypothesized that certain inflammatory features could be transmitted via the gut microbiome and tested this hypothesis using an animal model of inflammatory diseases. Twelve-week-old healthy C57 Bl/6 and Germ-Free (GF) female and male mice were fecal matter transplanted (FMT) under anaerobic conditions with TNFΔARE−/+ donors exhibiting spontaneous Rheumatoid Arthritis (RA) and Inflammatory Bowel Disease (IBD) or with conventional healthy mice control donors. The gut microbiome analysis was performed using 16S rRNA sequencing amplification and bioinformatics analysis with the HIVE bioinformatics platform. Histology, immunohistochemistry, ELISA Multiplex analysis, and flow cytometry were conducted to confirm the inflammatory transmission status. We observed RA and IBD features transmitted in the GF mice cohort, with gut tissue disruption, cartilage alteration, elevated inflammatory mediators in the tissues, activation of CD4/CD8+ T cells, and colonization and transmission of the gut microbiome similar to the donors’ profile. We did not observe a change or transmission when conventional healthy mice were FMT with TNFΔARE−/+ donors, suggesting that a healthy microbiome might withstand an unhealthy transplant. These findings show the potential involvement of the gut microbiome in inflammatory diseases. We identified a cluster of bacteria playing a role in this mechanism.


Microbiology ◽  
2021 ◽  
Vol 167 (12) ◽  
Author(s):  
Takeshi Shimizu ◽  
Manami Onuki ◽  
Shin Suzuki ◽  
Shinichiro Hirai ◽  
Eiji Yokoyama ◽  
...  

Enterohaemorrhagic Escherichia coli (EHEC) produces Shiga toxin 1 (Stx1) and Shiga toxin 2 (Stx2). Although stx1 and stx2 were found within the late operons of the Stx-encoding phages (Stx-phages), stx1 could mainly be transcribed from the stx1 promoter (P Stx1), which represents the functional operator-binding site (Fur box) for the transcriptional regulator Fur (ferric uptake regulator), upstream of stx1. In this study, we found that the production of Stx1 by EHEC was affected by oxygen concentration. Increased Stx1 production in the presence of oxygen is dependent on Fur, which is an Fe2+-responsive transcription factor. The intracellular Fe2+ pool was lower under microaerobic conditions than under anaerobic conditions, suggesting that lower Fe2+ availability drove the formation of less Fe2+-Fur, less DNA binding to the P Stx1 region, and an increase in Stx1 production.


2021 ◽  
Author(s):  
Babacar Mbaye ◽  
Cheikh Ibrahima LO ◽  
Niokhor Dione ◽  
Sarah Benabdelkader ◽  
Maryam Tidjani Alou ◽  
...  

Abstract Strains Marseille-P3761 and Marseille-P3195 are representatives of two bacterial species isolated from human specimens. Strain Marseille-P3761 was isolated from the stool of a healthy volunteer, while strain Marseille-P3915 was cultivated from the urine of a kidney transplant recipient. Both strains are anaerobic Gram-positive cocci bacteria. Both are catalase-negative and oxidase-negative and grow optimally at 37°C in anaerobic conditions. They also metabolize carbohydrates such as galactose, glucose, fructose, and glycerol. The major fatty acids were hexadecanoic acid for both strains, Marseille-P3761 (38%) and Marseille-P3195 (31%). The highest DNA-DNA hybridization values of Marseille-P3761 and Marseille-P3195 strains when compared to their closest phylogenetic relatives were 52.3% and 56.4%, respectively. The morphological, biochemical, phenotypic and genomic characteristics strongly support that these strains are new members of the Peptoniphilus genus. Thus, we suggest that strains Marseille-P3761 (CSUR P3761 = CCUG71569) and Marseille-P3195 (CSUR P3195 = DSM 103468) are the type strains of two new Peptoniphilus species, for which we propose the names Peptoniphilus colimassiliensis sp. nov. and Peptoniphilus urinimassiliensis sp. nov., respectively.


Sign in / Sign up

Export Citation Format

Share Document