Influence of Size and Shape on Inclusion Properties of Transition Metal-Based Wheel-and-Axle Diols

2009 ◽  
pp. 235-253 ◽  
Author(s):  
Alessia Bacchi ◽  
Mauro Carcelli
Author(s):  
H.J.G. Gundersen

Previously, all stereological estimation of particle number and sizes were based on models and notoriously gave biased results, were very inefficient to use and difficult to justify. For all references to old methods and a direct comparison with unbiased methods see recent reviews.The publication in 1984 of the DISECTOR, the first unbiased stereological probe for sampling and counting 3—D objects irrespective of their size and shape, signalled the new era in stereology — and give rise to a number of remarkably simple and efficient techniques based on its distinct property: It is the only known way to obtain an unbiased sample of 3-D objects (cells, organelles, etc). The principle is simple: within a 2-D unbiased frame count or sample only cells which are not hit by a parallel plane at a known, small distance h.The area of the frame and h must be known, which might sometimes in itself be a problem, albeit usually a small one. A more severe problem may arise because these constants are known at the scale of the fixed, embedded and sectioned tissue which is often shrunken considerably.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Author(s):  
Michel Fialin ◽  
Guy Rémond

Oxygen-bearing minerals are generally strong insulators (e.g. silicates), or if not (e.g. transition metal oxides), they are included within a rock matrix which electrically isolates them from the sample holder contacts. In this respect, a thin carbon layer (150 Å in our laboratory) is evaporated on the sections in order to restore the conductivity. For silicates, overestimated oxygen concentrations are usually noted when transition metal oxides are used as standards. These trends corroborate the results of Bastin and Heijligers on MgO, Al2O3 and SiO2. According to our experiments, these errors are independent of the accelerating voltage used (fig.l).Owing to the low density of preexisting defects within the Al2O3 single-crystal, no significant charge buildup occurs under irradiation at low accelerating voltage (< 10keV). As a consequence, neither beam instabilities, due to electrical discharges within the excited volume, nor losses of energy for beam electrons before striking the sample, due to the presence of the electrostatic charge-induced potential, are noted : measurements from both coated and uncoated samples give comparable results which demonstrates that the carbon coating is not the cause of the observed errors.


Author(s):  
C J R Sheppard

The confocal microscope is now widely used in both biomedical and industrial applications for imaging, in three dimensions, objects with appreciable depth. There are now a range of different microscopes on the market, which have adopted a variety of different designs. The aim of this paper is to explore the effects on imaging performance of design parameters including the method of scanning, the type of detector, and the size and shape of the confocal aperture.It is becoming apparent that there is no such thing as an ideal confocal microscope: all systems have limitations and the best compromise depends on what the microscope is used for and how it is used. The most important compromise at present is between image quality and speed of scanning, which is particularly apparent when imaging with very weak signals. If great speed is not of importance, then the fundamental limitation for fluorescence imaging is the detection of sufficient numbers of photons before the fluorochrome bleaches.


Author(s):  
G.A. Botton ◽  
C.J. Humphreys

Transition metal aluminides are of great potential interest for high temperature structural applications. Although these materials exhibit good mechanical properties at high temperature, their use in industrial applications is often limited by their intrinsic room temperature brittleness. Whilst this particular yield behaviour is directly related to the defect structure, the properties of the defects (in particular the mobility of dislocations and the slip system on which these dislocations move) are ultimately determined by the electronic structure and bonding in these materials. The lack of ductility has been attributed, at least in part, to the mixed bonding character (metallic and covalent) as inferred from ab-initio calculations. In this work, we analyse energy loss spectra and discuss the features of the near edge structure in terms of the relevant electronic states in order to compare the predictions on bonding directly with spectroscopic experiments. In this process, we compare spectra of late transition metal (TM) to early TM aluminides (FeAl and TiAl) to assess whether differences in bonding can also be detected. This information is then discussed in terms of bonding changes at grain boundaries in NiAl.


2020 ◽  
Vol 13 (4) ◽  
pp. 1269-1278 ◽  
Author(s):  
Kyojin Ku ◽  
Byunghoon Kim ◽  
Sung-Kyun Jung ◽  
Yue Gong ◽  
Donggun Eum ◽  
...  

We propose a new lithium diffusion model involving coupled lithium and transition metal migration, peculiarly occurring in a lithium-rich layered oxide.


2020 ◽  
Vol 7 (3) ◽  
pp. 786-794 ◽  
Author(s):  
Jingqi Han ◽  
Kin-Man Tang ◽  
Shun-Cheung Cheng ◽  
Chi-On Ng ◽  
Yuen-Kiu Chun ◽  
...  

A new class of luminescent cyclometalated Ir(iii) complexes with readily tunable mechanochromic properties derived from the mechanically induced trans-to-cis isomerization have been developed.


2020 ◽  
Vol 7 (8) ◽  
pp. 1022-1060 ◽  
Author(s):  
Wenbo Ma ◽  
Nikolaos Kaplaneris ◽  
Xinyue Fang ◽  
Linghui Gu ◽  
Ruhuai Mei ◽  
...  

This review summarizes recent advances in C–S and C–Se formations via transition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.


Sign in / Sign up

Export Citation Format

Share Document